Quasi-Affine Transformation in Higher Dimension

  • Valentin Blot
  • David Coeurjolly
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5810)


In many applications and in many fields, algorithms can considerably be speed up if the underlying arithmetical computations are considered carefully. In this article, we present a theoretical analysis of discrete affine transformations in higher dimension. More precisely, we investigate the arithmetical paving structure induced by the transformation to design fast algorithms.


  1. 1.
    Shizawa, M.: Discrete invertible affine transformations. In: 10th International Conference on Pattern Recognition, Atlantic City, vol. II, pp. 134–139. IEEE, Los Alamitos (1990)Google Scholar
  2. 2.
    Condat, L., Van De Ville, D., Forster-Heinlein, B.: Reversible, fast, and high-quality grid conversions. IEEE Transactions on Image Processing 17(5), 679–693 (2008)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Andres, E.: The quasi-shear rotation. In: Miguet, S., Ubéda, S., Montanvert, A. (eds.) DGCI 1996. LNCS, vol. 1176, pp. 307–314. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  4. 4.
    Nehlig, P., Ghazanfarpour, D.: Affine Texture Mapping and Antialiasing Using Integer Arithmetic. Computer Graphics Forum 11(3), 227–236 (1992)CrossRefzbMATHGoogle Scholar
  5. 5.
    Jacob, M.: Transformation of digital images by discrete affine applications. Computers & Graphics 19(3), 373–389 (1995)CrossRefGoogle Scholar
  6. 6.
    Nehlig, P.: Applications quasi affines: pavages par images réciproques. Theoretical Computer Science 156(1-2), 1–38 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Jacob, M.: Applications quasi-affines. PhD thesis, Université Louis Pasteur, Strasbourg, France (1993)Google Scholar
  8. 8.
    qJacob-Da Col, M.: Applications quasi-affines et pavages du plan discret. Theoretical Computer Science 259(1-2), 245–269 (2001), english version, MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Blot, V., Coeurjolly, D.: Quasi-affine transform in higher dimension. Technical Report RR–LIRIS-2009-010, Laboratoire LIRIS (April 2009),
  10. 10.
    Col, M.A.J.D., Tellier, P.: Quasi-linear transformations and discrete tilings. Theor. Comput. Sci 410(21-23), 2126–2134 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Storjohann, A., Labahn, G.: Asymptotically fast computation of hermite normal forms of integer matrices. In: ISSAC 1996: Proceedings of the 1996 international symposium on Symbolic and algebraic computation, pp. 259–266. ACM, New York (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Valentin Blot
    • 1
  • David Coeurjolly
    • 1
  1. 1.LIRIS, UMR5205Université de Lyon, CNRS, Ecole Normale Supérieure de Lyon, Université Lyon 1France

Personalised recommendations