Advertisement

Development of a Conceptual Model for a Knowledge-Based System for the Design of Closed-Loop PID Controllers

  • Jose Luis Calvo-Rolle
  • Héctor Alaiz-Moretón
  • Javier Alfonso-Cendón
  • Ángel Alonso-Álvarez
  • Ramón Ferreiro-García
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5788)

Abstract

This paper describes the methodology used in the development of a ruled-based conceptual model for a knowledge based system aimed at the designing of closed-loop or feedback PID (proportional, integral, derivative) controllers. The paper shows the organization of the existing rules and an explanation about a new way of obtaining specific rules for discriminating between different methods of optimizing the parameters of the controller, by using an automatic classification of a huge set of data obtained as the result of applying these methods to an extended collection of representative systems.

Keywords

Knowledge engineering PID closed-loop adjustment ruled-based system expert system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Astrom, K.J., Hagglund, T.: PID controllers: Theory, Design and Tuning. ISA, Research Triangle Park. North Carolina (1995)Google Scholar
  2. 2.
    Feng, Y.L., Tan, K.C.: PIDeasyTM and automated generation of optimal PID controllers. In: Third Asia-Pacific Conference on Measurement and Control, China, pp. 29–33 (1998)Google Scholar
  3. 3.
    Pang, G.K.H.: An Expert Adaptive Control Scheme in an Intelligent Process Control System. In: Proceedings of the IEEE International Symposium on Intelligent Control, Arlington Virginia (1991)Google Scholar
  4. 4.
    Wilson, D.I.: Towards intelligence in embedded PID controllers. In: Proceedings of the 8th IASTED Intelligent Systems & Control, Cambridge (2005)Google Scholar
  5. 5.
    Zhou, L., Li, X., Hu, T., Li, H.: Development of high-precision power supply based on expert self-tuning control. In: ICMIT 2005: Control Systems and Robotics, Wuhan, China, pp. 60421T.1–60421T.6 (2005)Google Scholar
  6. 6.
    Epshtein, V.L.: Hypertext knowledge base for the control theory. Automation and Remote Control 61, 1928–1933 (2001)zbMATHGoogle Scholar
  7. 7.
    Pang, G.K.H., Bacakoglu, H., Ho, M.F., Hwu, Y., Robertson, B.J., Shahrrava, B.: Knowledge-based system for control system design using MEDAL. In: Proceedings of the IEEE/IFAC Joint Symposium on Computer-Aided, pp. 187–196. IEEE Press, Arizona (1994)Google Scholar
  8. 8.
    Pang, G.K.H.: Implementation of a knowledge-based controller for hybrid systems. In: Proceedings of the 32nd IEEE Conference on Decision and Control, pp. 2315–2316. IEEE Press, Texas (1993)CrossRefGoogle Scholar
  9. 9.
    Parr, O.: Data Mining Cookbook. In: Modeling Data for Marketing, Risk, and Customer Relationship Management. John Wiley & Sons, Inc., New York (2001)Google Scholar
  10. 10.
    Quinlan, J.R.: Induction of decision trees. Machine Learning 1, 81–106 (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jose Luis Calvo-Rolle
    • 1
  • Héctor Alaiz-Moretón
    • 2
  • Javier Alfonso-Cendón
    • 2
  • Ángel Alonso-Álvarez
    • 2
  • Ramón Ferreiro-García
    • 1
  1. 1.Universidad de A Coruña, Escuela PolitécnicaFerrolSpain
  2. 2.Universidad de León, Escuela de Ingenierías, Edif. TecnológicoLeónSpain

Personalised recommendations