Cascade-Connected ANN Structures for Indoor WLAN Positioning

  • Miloš Borenović
  • Aleksandar Nešković
  • Djuradj Budimir
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5788)


Various radio systems can be used to obtain the position information in indoor environments. Due to the ubiquitous presence of WLAN networks, positioning techniques in these environments are the scope of intense research. This paper explores the properties of cascade-connected Artificial Neural Networks (ANNs) structures. Several cascade-connected ANN structures with space partitioning are compared to the single ANN multilayer feedforward structure. The benefits of using cascade-connected ANNs structures are shown and discussed in terms of the size of the environment and subspaces. The optimal cascade-connected ANN structure with space partitioning shows a 41% decrease in median error with respect to the single ANN model.


artificial neural network cascade-connected location positioning radio space partitioning WLAN 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gu, Y., Lo, A., Niemegeers, I.: A survey of indoor positioning systems for wireless personal networks. IEEE Communications Surveys & Tutorials 11(1), 13–32 (First Quarter 2009)CrossRefGoogle Scholar
  2. 2.
    Diggelen, F.: Indoor GPS theory & implementation. In: 2002 IEEE Position Location and Navigation Symposium, April 2002, pp. 240–247 (2002)Google Scholar
  3. 3.
    Ahonen, S., Eskelinen, P.: Mobile terminal location for UMTS. IEEE Aerospace and Electronic Systems Magazine 18(2), 23–27 (2003)CrossRefGoogle Scholar
  4. 4.
    Llombart, M., Ciurana, M., Barcelo-Arroyo, F.: On the scalability of a novel WLAN positioning system based on time of arrival measurements. In: 5th Workshop on Positioning, Navigation and Communication, 2008. WPNC 2008, pp. 15–21 (2008)Google Scholar
  5. 5.
    King, T., Kopf, S., Haenselmann, T., Lubberger, C., Effelsberg, W.: COMPASS: A Probabilistic Indoor Positioning System Based on 802.11 and digital compasses. University of Mannheim, D-68159 Mannheim, Germany, TR-2006-012 (2006)Google Scholar
  6. 6.
    Sayrafian-Pour, K., Kaspar, D.: Indoor positioning using spatial power spectrum. In: IEEE PIMRC 2005, September 2005, vol. 4, pp. 2722–2726 (2005)Google Scholar
  7. 7.
    Borenovic, M., Neskovic, A.: Comparative analysis of RSSI, SNR and noise level parameters applicability for WLAN positioning purposes. In: IEEE EUROCON (2009)Google Scholar
  8. 8.
    Bahl, P., Padmanabhan, V.N.: RADAR: An in-building RF-based user location and tracking system. In: INFOCOM 2000, vol. 2, pp. 775–784 (2000)Google Scholar
  9. 9.
    Li, B., Salter, J., Dempster, A., Rizos, C.: Indoor positioning techniques based on wireless LAN. In: AusWireless 2006, Sydney (March 2006)Google Scholar
  10. 10.
    Youssef, M., Agrawala, A.: The Horus WLAN location determination system. In: Int. Conf. on Mobile Systems, Applications And Services, pp. 205–218 (2005)Google Scholar
  11. 11.
    Eckert, K.: Overview of wireless LAN based indoor positioning systems. In: Mobile Bussines Seminar, University of Mannheim, Germany (2005)Google Scholar
  12. 12.
    Battiti, R., Nhat, T.L., Villani, A.: Location-aware computing: A neural network model for determining location in wireless LANs. Technical Report # DIT-02-0083 (February 2002)Google Scholar
  13. 13.
    Borenovic, M., Neskovic, A.: Utilizing artificial neural networks for WLAN positioning. In: IEEE PIMRC, 2008, Cannes, France (September 2008)Google Scholar
  14. 14.
    Borenovic, M., Neskovic, A.: Positioning in WLAN environment by use of artificial neural networks and space partitioning. Annals of Telecommunications journal, Special Issue on Positioning and Telecommunication Systems (in print, 2009)Google Scholar
  15. 15.
    Hasoun, H.M.: Fundamentals of artificial neural networks. Massachusetts Institute of Technology (1995)Google Scholar
  16. 16.
    Hanson, S.J., Burr, D.J.: Minkowski-r Backpropagation: Learning in connectionist models with non-Euclidean error signals. In: Anderson, D.Z. (ed.) Neural Information Processing Systems, Denver, 1987, pp. 348–357. American Institute of Physics, New York (1988)Google Scholar
  17. 17.
    Fahlman, S., Lebiere, C.: The cascade-correlation learning architecture. In: Advances in Neural Information Processing Systems, vol. 2, pp. 524–532 (1990)Google Scholar
  18. 18.
    Shang, Y., Wah, W.B.: Global optimization for neural network training, pp. 45–56. IEEE Computer Society, Los Alamitos (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Miloš Borenović
    • 1
    • 2
  • Aleksandar Nešković
    • 1
  • Djuradj Budimir
    • 2
  1. 1.School of Electrical EngineeringBelgradeSerbia
  2. 2.Wireless Communications Research Group, School of InformaticsUniversity of WestminsterLondonUnited Kingdom

Personalised recommendations