Advertisement

Fuzzy Multi-Criteria Decision Making in Stereovision Matching for Fish-Eye Lenses in Forest Analysis

  • P. J. Herrera
  • G. Pajares
  • M. Guijarro
  • J. J. Ruz
  • J. M. De la Cruz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5788)

Abstract

This paper describes a novel stereovision matching approach based on omni-directional images obtained with fish-eye lenses in forest environments. The goal is to obtain a disparity map as a previous step for determining the volume of wood in the imaged area. The interest is focused on the trunks of the trees. Due to the irregular distribution of the trunks, the most suitable features are the pixels. A set of six attributes is used for establishing the matching between the pixels in both images of each stereo pair analysed. The final decision about the matched pixels is taken based on a well tested Fuzzy Multi-Criteria Decision Making approach, where the attributes determine the criteria and the potential matches in one image of the stereo pair for a given pixel in the other one determine the alternatives. The application of this decision making approach makes the main finding of the paper. The full procedure is based on the application of three well known matching constraints. The proposed approach is compared favourably against the usage of simple features.

Keywords

Fish-eye stereo vision Stereovision matching omni-directional forest images fuzzy Multi-Criteria Decision Making 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barnard, S., Fishler, M.: Computational stereo. ACM Computing Surveys 14, 553–572 (1982)CrossRefGoogle Scholar
  2. 2.
    Cochran, S.D., Medioni, G.: 3-D surface description from binocular stereo. IEEE Trans. Pattern Analysis and Machine Intelligence 14(10), 981–994 (1992)CrossRefGoogle Scholar
  3. 3.
    Tang, L., Wu, C., Chen, Z.: Image dense matching based on region growth with adaptive window. Pattern Recognit. Letters 23, 1169–1178 (2002)CrossRefzbMATHGoogle Scholar
  4. 4.
    Lew, M.S., Huang, T.S., Wong, K.: Learning and feature selection in stereo matching. IEEE Trans. Pattern Anal. Machine Intell. 16, 869–881 (1994)CrossRefGoogle Scholar
  5. 5.
    Abraham, S., Förstner, W.: Fish-eye-stereo calibration and epipolar rectification. Photogrammetry and Remote Sensing 59, 278–288 (2005)CrossRefGoogle Scholar
  6. 6.
    Schwalbe, E.: Geometric modelling and calibration of fisheye lens camera systems. In: Proc. 2nd Panoramic Photogrammetry Workshop, Int. Archives of Photogrammetry and Remote Sensing, Part 5/W8, vol. 36 (2005)Google Scholar
  7. 7.
    Barnea, D.I., Silverman, H.F.: A class of algorithms for fast digital image registration. IEEE Trans. Computers 21, 179–186 (1972)CrossRefzbMATHGoogle Scholar
  8. 8.
    Pajares, G., de la Cruz, J.M.: Visión por Computador: Imágenes digitales y aplicaciones. RA-MA (2008)Google Scholar
  9. 9.
    Chen, C.T.: Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets and Systems 114, 1–9 (2000)CrossRefzbMATHGoogle Scholar
  10. 10.
    Wang, W., Fenton, N.: Risk and confidence analysis for fuzzy multi criteria decision making. Knowledge Based Systems 19, 430–437 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • P. J. Herrera
    • 1
  • G. Pajares
    • 1
  • M. Guijarro
    • 2
  • J. J. Ruz
    • 3
  • J. M. De la Cruz
    • 3
  1. 1.Dpto. Ingeniería del Software e Inteligencia Artificial, Facultad de InformáticaUniversidad ComplutenseMadridSpain
  2. 2.Centro Superior de Estudios Felipe IIIngeniería Técnica en informática de SistemasAranjuez,MadridSpain
  3. 3.Dpto. Arquitectura Computadores y Automática, Facultad de InformáticaUniversidad ComplutenseMadridSpain

Personalised recommendations