Advertisement

Extended Cascaded Star Schema and ECOLAP Operations for Spatial Data Warehouse

  • Marcin Gorawski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5788)

Abstract

In this paper several new aspects of spatial data warehouse modeling are presented. The extended cascaded star schema in spatial telemetric data warehouse SDW(t) was defined. Research proven that there is a strong need for building many SDW’s extended cascaded star schemas as an outcome of separate spatio-temporal conceptual models. For one of these new data schemas, the definitions of cascaded ECOLAP operations were presented. These operations base on a relation algebra, and make possible ad-hoc queries executing.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atluri, V., Adam, N., Yu, S., Yesha, Y.: Efficient Storage and Management of Environmental Information. In: 19th IEEE Symposium on Mass Storage Systems, Maryland, USA (2002)Google Scholar
  2. 2.
    Bédard, Y., Merret, T., Han, J.: Fundamentals of Spatial Data Warehousing for Geographic Knowledge Discovery. In: Geographic Data Mining and Knowledge Discovery, ch. 3. Research Monographs in GIS, pp. 53–73. Taylor & Francis, Abington (2001)CrossRefGoogle Scholar
  3. 3.
    Gorawski, M., Bugdol, M.: Cascaded ECOLAP Operations. Studia Informatica 28(3A), 43–63 (2007)Google Scholar
  4. 4.
    Gorawski, M., Gębczyk, W.: Distributed Approach of Continuous Queries with kNN Join Processing in Spatial Telemetric Data Warehouse. In: Taniar, D. (ed.) Progressive Methods in Data Warehousing and Business Intelligence, IGI Global, pp. 271–279 (2009)Google Scholar
  5. 5.
    Gorawski, M., Malczok, R.: Materialized aR-tree in Distributed Spatial Data Warehouse. International Journal Intelligent Data Analysis 10(4), 361–377 (2006)Google Scholar
  6. 6.
    Gupta, H., Mumick, I.: Selection of Views to Materialize in a Data Warehouse. Transactions of Knowledge and Data Engineering (TKDE) 17, 24–43 (2005)CrossRefGoogle Scholar
  7. 7.
    Han, J., Stefanovic, N., Kopersky, K.: Selective Materialization: An Efficient Method for Spatial Data Cube Construction. In: Wu, X., Kotagiri, R., Korb, K.B. (eds.) PAKDD 1998. LNCS, vol. 1394. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  8. 8.
    Jensen, C., Kligys, A., Pedersen, T., Timko, I.: Multidimensional Data Modeling for Location-based Services. VLDB Journal 13, 1–21 (2004)CrossRefGoogle Scholar
  9. 9.
    Malinowski, E., Zimanyi, E.: Representing Spatiality in a Conceptual Multidimensional Model. In: ACM Int. Workshop on Geographic Information Systems, GIS 2004 (2004)Google Scholar
  10. 10.
    Shekhar, S., Lu, C., Tan, X., Chawla, S.: Map Cube: A Visualization Tool for Spatial Data Warehouses. In: Geographic Data Mining and Knowledge Discovery, pp. 74–100. Taylor and Francis, Abington (2001)CrossRefGoogle Scholar
  11. 11.
    Stefanovic, N., Han, J., Koperski, K.: Object-based Selective Materialization for Efficient Implementation of Spatial Data Cubes. IEEE Transactions on Knowledge and Data Engineering (TKDE), 938–958 (2000)Google Scholar
  12. 12.
    Timoko, I., Pedersen, T.: Capturing Complex Multidimensional Data in Location-based Warehouses. In: ACM Int. Workshop on Geographic Information Systems, GIS 2004 (2004)Google Scholar
  13. 13.
    Yu, S., Atluri, V., Adam, N.: Cascaded Star: A Hyper-dimensional Model for a Data Warehouse. In: Bressan, S., Küng, J., Wagner, R. (eds.) DEXA 2006. LNCS, vol. 4080, pp. 439–448. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Marcin Gorawski
    • 1
  1. 1.Institute of Computer ScienceSilesian University of TechnologyGliwicePoland

Personalised recommendations