Discriminant Regression Analysis to Find Homogeneous Structures

  • Esteban Garcia-Cuesta
  • Ines M. Galvan
  • Antonio J. de Castro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5788)


The main motivation of this paper is to propose a method to extract the structure information from the output data and find the input data manifold that best represents that output structure. A graph similarity viewpoint is used to build up a clustering algorithm that tries to find out different linear models in a regression framework. The main novelty of the algorithm is related with using the structured information of the output data, to find out several input models that best represent that structure. This novelty is base on the intuition that similar structures in the output must share a common model. Finally, the proposed method is applied to a real remote sensing retrieval problem where we want to recover the physical parameters from a spectrum of energy.


dimensionality reduction spectral clustering LDA discriminant models density clustering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bach, F., Jordan, M.: Learning spectral clustering. In: Advances in Neural Information Processing Systems (NIPS), pp. 305–312 (2004)Google Scholar
  2. 2.
    Cai, D., He, X., Han, J.: Srda: An efficient algorithm for large-scale discriminant analysis. IEEE Transactions on Knowledge and Data Engineering 20(1) (2008)Google Scholar
  3. 3.
    Ding, C.: A tutorial on spectral clustering. In: Talk presented at ICML (2004),
  4. 4.
    Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD (1996)Google Scholar
  5. 5.
    Fukunaga, K.: Introduction to Statistical Pattern Recognition. Academic Press, New York (1990)zbMATHGoogle Scholar
  6. 6.
    Goody, R.M., Yung, Y.: Atmospheric Radiation. Theoretical basis, ch. 2Google Scholar
  7. 7.
    Jollife, I.T.: Principal Component Analysis, ch. 8, 2nd edn. Springer Series in Statistics. Springer, New York (2002)Google Scholar
  8. 8.
    Lu, G., Yan, Y., Colechin, M.: A digital imaging based multifuncional flame monitoring system. IEEE T. Instrum. Meas. 53Google Scholar
  9. 9.
    Mohar, B.: Some applications of laplace eigenvalues of graphs. In: Graph Symmetry: Algebraic Methods and Applications, NATO, pp. 225–275 (1997)Google Scholar
  10. 10.
    Mohar, B.: The laplacian spectrum of graphs. Graph theory, combinatorics, and applications 2, 871–898 (2001)zbMATHGoogle Scholar
  11. 11.
    Rothman, L.S., et al.: The hitran molecular spectroscopic database: edition of 2000 including updates through 2001. J. Quant. Spectrosc. Radiat. Transfer (2003)Google Scholar
  12. 12.
    Schölkopf, B., Smola, A.: Learning with Kernels: Support vector machines, regularization, optimization, and beyond. MIT Press, Cambridge (2002)Google Scholar
  13. 13.
    Song, L., Smola, A., Gretton, A., Borgwardt, K.M.: A dependence maximization view of clustering. In: Proceedings of ICML 2007, vol. 227, pp. 815–822 (2007)Google Scholar
  14. 14.
    Turk, M., Pentland, A.: Face recognition using eigenfaces. In: IEEE Conference on Computer Vision and Pattern Recognition (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Esteban Garcia-Cuesta
    • 1
  • Ines M. Galvan
    • 2
  • Antonio J. de Castro
    • 1
  1. 1.Physics DepartmentSpain
  2. 2.Computer Science DepartmentCarlos III UniversityLeganes (Madrid)Spain

Personalised recommendations