Advertisement

Parameter Estimation

  • Ralph E. White
  • Venkat R. Subramanian

Abstract

Introduction

Keywords

Sensitivity Coefficient Differential Equation Model Material Balance Equation Small Confidence Interval Measured Dependent Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bequette, B.W.: Process Dynamics: Modeling, Analysis, and Simulation. Prentice-Hall PTR, Englewood Cliffs (1998)Google Scholar
  2. 2.
    Crassidis, J.L., Junkins, J.L.: Optimal Estimation of Dynamic Systems. Chapman & Hall/CRC Press, Boca Raton (2004)CrossRefGoogle Scholar
  3. 3.
    Lopez, R.J.: Advanced Engineering Mathematics, p. 1158. Addison Wesley, Reading (2001)Google Scholar
  4. 4.
    Ogunnaike, B.A., Harmon Ray, W.: Process Dynamics, Modeling and Control. Oxford University Press, Oxford (1994)Google Scholar
  5. 5.
    Montgomery, D.C., Peck, E.A.: Introduction to Regression Analysis. John Wiley & Sons, Inc., New York (1982)Google Scholar
  6. 6.
    Rafter, J.A., Abell, M.L., Braselton, J.P.: Statistics wtih Maple. Elsevier Science, USA (2003)Google Scholar
  7. 7.
    Bard, Y.: Nonlinear Parameter Estimation. Academic Press, Inc., London (1974)Google Scholar
  8. 8.
    Rawlings, J.B., Ekerdt, J.G.: Chemical Reactor Analysis and Design Fundamentals. Nob Hill Publishing, LLC, Madison (2002)Google Scholar
  9. 9.
    Constantinides, A., Mostoufi, N.: Numerical Methods for Chemical Engineers with MATLAB Applications. Prentice-Hall PTR, Englewood Cliffs (1999)Google Scholar
  10. 10.
    Navidi, W.C.: Statistics for Engineers and Scientists. McGraw-Hill, New York (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ralph E. White
    • Venkat R. Subramanian

      There are no affiliations available

      Personalised recommendations