Skip to main content

Learning Complex Population-Coded Sequences

  • Conference paper
Artificial Neural Networks – ICANN 2009 (ICANN 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5768))

Included in the following conference series:

Abstract

In humans and primates, the sequential structure of complex actions is apparently learned at an abstract “cognitive” level in several regions of the frontal cortex, independent of the control of the immediate effectors by the motor system. At this level, actions are represented in terms of kinematic parameters – especially direction of end effector movement – and encoded using population codes. Muscle force signals are generated from this representation by downstream systems in the motor cortex and the spinal cord.

In this paper, we consider the problem of learning population-coded kinematic sequences in an abstract neural network model of the medial frontal cortex. For concreteness, the sequences are represented as line drawings in a two-dimensional workspace. Learning such sequences presents several challenges because of the internal complexity of the individual sequences and extensive overlap between sequences. We show that, by using a simple module-selection mechanism, our model is capable of learning multiple sequences with complex structure and very high cross-sequence similarity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Georgopoulos, A., Kalaska, J., Caminiti, R., Massey, J.: On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. Journal of Neuroscience 2, 1527–1537 (1982)

    Google Scholar 

  2. Schwarz, A., Kettner, R., Georgopoulos, A.: Primate motor cortex and free arm movement to visual targets in 3-d space. i. relations between single cell discharge and direction of movement. Journal of Neuroscience 8, 2913–2927 (1988)

    Google Scholar 

  3. Mushiake, H., Inase, M., Tanji, J.: Neuronal activity in the primate premotor, supplementary and precentral motor cortex during visually guided and internally determined sequential movements. Journal of Neurophysiololgy 66, 705–718 (1991)

    Google Scholar 

  4. Schwartz, A.: Motor cortical activity during drawing movements: single unit activity during sinusoid tracing. Journal of Neurophysiology 68, 528–541 (1992)

    Google Scholar 

  5. Kakei, S., Hoffman, D., Strick, P.: Muscle and movement representations in the primary motor cortex. Science 285, 2136–2139 (1999)

    Article  Google Scholar 

  6. Seitz, R., Stephan, K., Binkofski, F.: Control of action as mediated by the human frontal lobe. Experimental Brain Research 133, 71–80 (2000)

    Article  Google Scholar 

  7. Shima, K., Tanji, J.: Neuronal activity in the supplementary and presupplementary motor areas for temporal organization of multiple movements. Journal of Neurophysiology 84, 2148–2160 (2000)

    Google Scholar 

  8. Kakei, S., Hoffman, D., Strick, P.: Direction of action is represented in the ventral premotor cortex. Nature Neuroscience 4, 1020–1025 (2001)

    Article  Google Scholar 

  9. Nakamura, K., Sakai, K., Hikosaka, O.: Neuronal activity in medial frontal cortex during learning of sequential procedures. Journal of Neurophysiology 80, 2671–2687 (1998)

    Google Scholar 

  10. Averbeck, B., Chafee, M., Crowe, D., Georgopoulos, A.: Parallel processing of serial movements in prefrontal cortex. Proceedings of the National Academy of Sciences USA 99, 13172–13177 (2002)

    Article  Google Scholar 

  11. Averbeck, B., Chafee, M., Crowe, D., Georgopoulos, A.: Neural activity in prefrontal cortex during copying geometrical shapes. i. single cells encode shape, sequence and metric parameters. Experimental Brain Research 150, 127–141 (2003)

    Article  Google Scholar 

  12. Averbeck, B., Crowe, D., Chafee, M., Georgopoulos, A.: Neural activity in prefrontal cortex during copying geometrical shapes. ii. decoding shape segments from neuronal ensembles. Experimental Brain Research 150, 142–153 (2003)

    Article  Google Scholar 

  13. d’Avella, A., Saltiel, P., Bizzi, E.: Combinations of muscle synergies in the construction of natural motor behavior. Nature Neuroscience 6, 300–308 (2003)

    Article  Google Scholar 

  14. Lu, X., Ashe, J.: Anticipatory activity in primary motor cortex codes memorized movement sequences. Neuron 45, 967–973 (2005)

    Article  Google Scholar 

  15. Graziano, M.: The organization of behavioral repertoire in motor cortex. Annual Review of Neuroscience 29, 105–134 (2006)

    Article  Google Scholar 

  16. Ajemian, R., Bullock, D., Grossberg, S.: Kinematic coordinates in which motor cortical cells encode movement direction. Journal of Neurophysiology 84, 2191–2203 (2000)

    Google Scholar 

  17. Sergio, L., Kalaska, J.: Systematic changes in motor cortex cell activity with arm posture during directional isometric force generation. Journal of Neurophysiology 89, 212–228 (2003)

    Article  Google Scholar 

  18. Cisek, P.: Cortical mechanisms of action selection: the affordance competition hypothesis. Phil. Trans. R. Soc. B 362, 1585–1599 (2007)

    Article  Google Scholar 

  19. Matsuzaka, Y., Picard, N., Strick, P.: Skill representation in the primary motor cortex after long-term practice. Journal of Neurophysiology 97, 1819–1832 (2007)

    Article  Google Scholar 

  20. Ajemian, R., Green, A., Bullock, D., Sergio, L., Kalaska, J., Grossberg, S.: Assessing the function of motor cortex: single-neuron models of how neural response is modulated by limb biomechanics. Neuron 58, 414–428 (2008)

    Article  Google Scholar 

  21. Grillner, S.: Biological pattern generation: the cellular and computational logic of networks in motion. Neuron 52, 751–766 (2006)

    Article  Google Scholar 

  22. Ijspreet, A., Crespi, A., Ryczko, D., Cabelguen, J.M.: From swimming to walking with a salamander robot driven by a spinal cord model. Science 315, 1416–1420 (2007)

    Article  Google Scholar 

  23. Graybiel, A.: Building action repertoires: memory and learning functions of the basal ganglia. Current Opinion in Neurobiology 5, 733–741 (1995)

    Article  Google Scholar 

  24. Lukashin, A., Georgopoulos, A.: A neural network for coding of trajectories by time series of neuronal population vectors. Neural Computation 6, 19–28 (1994)

    Article  Google Scholar 

  25. Lukashin, A., Wilcox, G., Georgopoulos, A.: Overlapping neural networks for multiple motor engrams. Proceedings of the National Academy of Sciences, USA 91, 8651–8654 (1994)

    Article  Google Scholar 

  26. Lukashin, A., Amirikian, B., Mozhaev, V., Wilcox, G., Georgopoulos, A.: Modeling motor cortical operations by an attractor network of stochastic neurons. Biological Cybernetics 74, 255–261 (1996)

    Article  MATH  Google Scholar 

  27. Ans, B., Coiton, Y., Gilhodes, J.P., Velay, J.L.: A neural network model for temporal sequence learning and motor programming. Neural Networks 7, 1461–1476 (1994)

    Article  Google Scholar 

  28. Bullock, D., Cisek, P., Grossberg, S.: Cortical networks for control of voluntary arm movements under variable force conditions. Cerebral Cortex 8, 48–62 (1998)

    Article  Google Scholar 

  29. Taylor, J., Taylor, N.: Analysis of recurrent cortico-basal ganglia-thalamic loops for working memory. Biological Cybernetics 82, 415–432 (2000)

    Article  MATH  Google Scholar 

  30. Taylor, N., Taylor, J.: Hard-wired models of working memory and temporal sequence storage and generation. Neural Networks 13, 201–224 (2000)

    Article  Google Scholar 

  31. Grossberg, S., Paine, R.: A neural model of cortico-cerebellar interactions during attentive imitation and predictive learning of sequential handwriting movements. Neural Networks 13, 999–1046 (2000)

    Article  Google Scholar 

  32. Doya, K.: What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural Networks 12, 961–974 (1999)

    Article  Google Scholar 

  33. Houk, J.: Agents of the mind. Biol. Cybern. 92, 427–437 (2005)

    Article  MATH  Google Scholar 

  34. Minai, A., Barrows, G., Levy, W.: Disambiguation of pattern sequences with recurrent networks. In: Proc. WCNN, San Diego, vol. IV, pp. 176–180 (1994)

    Google Scholar 

  35. Sun, R., Giles, C.: Sequence Learning: Paradigms, Algorithms, and Applications. Springer, Heidelberg (2001)

    Book  Google Scholar 

  36. Reiss, M., Taylor, J.: Storing temporal sequences. Neural Networks 4, 773–787 (1991)

    Article  Google Scholar 

  37. Doboli, S., Minai, A.: Using latent attractors to discern temporal order. In: Proceedings of IJCNN, Budapest, Hungary (July 2004)

    Google Scholar 

  38. Fujii, N., Graybiel, A.: Representation of action sequence boundaries by macaque prefrontal cortical neurons. Science 301, 1246–1749 (2003)

    Article  Google Scholar 

  39. Jog, M., Kubota, Y., Connolly, C., Hillgaart, V., Graybiel, A.: Building neural representations of habits. Science 286, 1745–1749 (1999)

    Article  Google Scholar 

  40. Matsuzaka, Y., Aizawa, H., Tanji, J.: A motor area rostral to the supplementary motor area (presupplementary motor area) in the monkey: neuronal activity during a learned motor task. Journal of Neurophysiology 68, 653–662 (1992)

    Google Scholar 

  41. Ghanem, A., Minai, A.: A modular gene regulatory network model of ontogenesis. In: Proc. Int. Conf. on Complex Sys., Boston, MA (2007)

    Google Scholar 

  42. Doboli, S., Minai, A., Brown, V.: Adaptive dynamic modularity in a connectionist model of context-dependent idea generation. In: Proceedings of the IJCNN 2007, Orlando, FL, pp. 2183–2188 (2007)

    Google Scholar 

  43. Minai, A., Iyer, L., Padur, D., Doboli, S.: A dynamic connectionist model of idea generation. In: Proceedings of the IJCNN 2009, Atlanta, GA (2009)

    Google Scholar 

  44. Perumal, S., Minai, A.: Stable-yet-switchable (sys) attractor networks. In: Proceedings of the IJCNN 2009, Atlanta, GA (2009)

    Google Scholar 

  45. Mountcastle, V.: The columnar organization of the neocortex. Brain 120, 701–722 (1997)

    Article  Google Scholar 

  46. Widrow, B., Hoff, M.: Adaptive switching circuits. In: 1960 IRE WESCON Convention Record, Part 4, pp. 96–104 (1960)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Byadarhaly, K.V., Perdoor, M., Vasa, S., Fernandez, E., Minai, A.A. (2009). Learning Complex Population-Coded Sequences. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds) Artificial Neural Networks – ICANN 2009. ICANN 2009. Lecture Notes in Computer Science, vol 5768. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04274-4_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04274-4_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04273-7

  • Online ISBN: 978-3-642-04274-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics