Controlled and Automatic Processing in Animals and Machines with Application to Autonomous Vehicle Control

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5768)


There are two modes of control recognised in the cognitive psychological literature. Controlled processing is slow, requires serial attention to sub-tasks, and requires effortful memory retrieval and decision making. In contrast automatic control is less effortful, less prone to interference from simultaneous tasks, and is driven largely by the current stimulus. Neurobiological analogues of these are goal-directed and habit-based behaviour respectively. Here, we suggest how these control modes might be deployed in an engineering solution to Automatic Vehicle Control. We present pilot data on a first step towards instantiating automatised control in the architecture, and suggest a synergy between the engineering and biological investigation of this dual-process approach.


Executive control habits basal ganglia loops Fuzzy Tuning Autonomous Vehicle Control dual-process theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Styles, E.: The Psychology of Attention. Psychology Press, East Sussex (1997)CrossRefGoogle Scholar
  2. 2.
    Packard, M.G., Knowlton, B.J.: Learning and memory functions of the basal ganglia. Annu. Rev. Neurosci. 25, 563–593 (2002)CrossRefGoogle Scholar
  3. 3.
    Owen, A.M.: Cognitive planning in humans: neuropsychological, neuroanatomical and neuropharmacological perspectives. Prog. Neurobiol. 53(4), 431–450 (1997)CrossRefGoogle Scholar
  4. 4.
    Abdullah, R., Hussain, A., Warwick, K., Zayed, A.: Autonomous intelligent cruise control using a novel multiple-controller framework incorporating fuzzy-logic based switching and tuning. Neurocomputing (in press)Google Scholar
  5. 5.
    Hussain, A., Gurney, K., Abdullah, R., Chambers, J.: Emergent common functional principles in control theory and the vertebrate brain: A case study with autonomous vehicle control. In: Kůrková, V., Neruda, R., Koutník, J. (eds.) ICANN 2008, Part II. LNCS, vol. 5164, pp. 949–958. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Hommel, B., Ridderinkhof, K.R., Theeuwes, J.: Cognitive control of attention and action: issues and trends. Psychol. Res. 66(4), 215–219 (2002)CrossRefGoogle Scholar
  7. 7.
    Schneider, W., Shiffrin, R.: Controlled and automatic information procxessing i. derection, search and attention. Psychological Review 84, 1–66 (1977)CrossRefGoogle Scholar
  8. 8.
    Shiffrin, R., Schneider, W.: Controlled and automatic information procxessing ii. perception, learning, automatic attending and a general theory. Psychological Review 84, 128–190 (1977)CrossRefGoogle Scholar
  9. 9.
    Neuman, O.: Automatic processing: A review of recent findings and a place for an old theory. In: Printz, W., Sanders, A. (eds.) Cognition and Motor Processes. Springer, Berlin (1984)Google Scholar
  10. 10.
    Birnboim, S.: The automatic and controlled information-processing dissociation: is it still relevant? Neuropsychol. Rev. 13(1), 19–31 (2003)CrossRefGoogle Scholar
  11. 11.
    Graybiel, A.M.: Habits, rituals, and the evaluative brain. Annu. Rev. Neurosci. 31, 359–387 (2008)CrossRefGoogle Scholar
  12. 12.
    Adams, C., Dickinson, A.: Instrumental responding following reinforcer devaluation. Quarterly Journal of Experimental Psychology 33, 109–122 (1981)CrossRefGoogle Scholar
  13. 13.
    Norman, D., Shallice, T.: Attention to action: Willed and automatic control of behavior. In: Davidson, R.J., Schwartz, G.E., Shapiro, D. (eds.) Consciousness and Self-Regulation. Plenum Press, New York (1980)Google Scholar
  14. 14.
    Shallice, T.: Specific impairments of planning. Philos. Trans. R Soc. Lond. B. Biol. Sci. 298, 199–209 (1982)CrossRefGoogle Scholar
  15. 15.
    Prescott, T.J., Bryson, J.J., Seth, A.K.: Introduction to the theme issue on modelling natural action selection. Philos. Trans. R Soc. Lond. B. Biol. Sci. 362, 1521–1529 (2007)CrossRefGoogle Scholar
  16. 16.
    Garforth, J., McHale, S.L., Meehan, A.: Executive attention, task selection and attention-based learning in a neurally controlled simulated robot. Neurocomputing 69(16-18), 1923–1945 (2006)CrossRefGoogle Scholar
  17. 17.
    Redgrave, P., Prescott, T.J., Gurney, K.N.: The basal ganglia: a vertebrate solution to the selection problem? Neuroscience 89, 1009–1023 (1999)CrossRefGoogle Scholar
  18. 18.
    Wilson, C.J.: Striatal circuitry: categorically selective, or selectively categorical? In: Miller, R., Wickens, J. (eds.) Brain Dynamics and the Striatal Complex. Volume submitted MS, pp. 289–306. Harwood Academic (1999)Google Scholar
  19. 19.
    Yin, H.H., Knowlton, B.J.: The role of the basal ganglia in habit formation. Nat. Rev. Neurosci. 7(6), 464–476 (2006)CrossRefGoogle Scholar
  20. 20.
    Dalley, J.W., Cardinal, R.N., Robbins, T.W.: Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci. Biobehav. Rev. 28(7), 771–784 (2004)CrossRefGoogle Scholar
  21. 21.
    Joel, D., Weiner, I.: The organization of the basal ganglia-thalamocortical circuits: open interconnected rather than closed segregated. Neuroscience 63, 363–379 (1994)CrossRefGoogle Scholar
  22. 22.
    Haber, S.N., Fudge, J.L., McFarland, N.R.: Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J. Neurosci. 20(6), 2369–2382 (2000)Google Scholar
  23. 23.
    MacLeod, C.M.: Half a century of research on the stroop effect: an integrative review. Psychol. Bull. 109(2), 163–203 (1991)CrossRefGoogle Scholar
  24. 24.
    Daw, N.D., Niv, Y., Dayan, P.: Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat. Neurosci. 8(12), 1704–1711 (2005)CrossRefGoogle Scholar
  25. 25.
    Conatser, R., Wagner, J., Ganta, S., Walker, I.: Diagnosis of automotive electronic throttle control systems. Control Engineering Practice 12, 23–30 (2004)CrossRefGoogle Scholar
  26. 26.
    Lee, C.Y.: Adaptive control of a class of nonlinear systems using multiple parameter models. Int. J. Contr. Autom. Sys. 4(4), 428–437 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Adaptive behaviour research group, Department of PsychologyUniversity of SheffieldUK
  2. 2.Department of Computing ScienceUniversity of StirlingStirlingScotland, UK

Personalised recommendations