Actin Filament Tracking Based on Particle Filters and Stretching Open Active Contour Models

  • Hongsheng Li
  • Tian Shen
  • Dimitrios Vavylonis
  • Xiaolei Huang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5762)


We introduce a novel algorithm for actin filament tracking and elongation measurement. Particle Filters (PF) and Stretching Open Active Contours (SOAC) work cooperatively to simplify the modeling of PF in a one-dimensional state space while naturally integrating filament body constraints to tip estimation. Our algorithm reduces the PF state spaces to one-dimensional spaces by tracking filament bodies using SOAC and probabilistically estimating tip locations along the curve length of SOACs. Experimental evaluation on TIRFM image sequences with very low SNRs demonstrates the accuracy and robustness of this approach.


Actin Filament Particle Filter Active Contour Iterative Close Point Iterative Close Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Fujiwara, I., Takahashi, S., Tadakuma, H., Funatsu, T., Ishiwata, S.: Microscopic analysis of polymerization dynamics with individual actin filaments. Nat. Cell Biol. 4, 666–673 (2002)CrossRefGoogle Scholar
  2. 2.
    Fujiwara, I., Vavylonis, D., Pollard, T.D.: Polymerization kinetics of ADP- and ADP-Pi-actin determined by fluorescence microscopy. Proc. Natl. Acad. Sci. USA 104, 8827–8832 (2007)CrossRefGoogle Scholar
  3. 3.
    Kuhn, J.R., Pollard, T.D.: Real-time measurements of actin filament polymerization by total internal reflection fluorescence microscopy. Biophys. J. 88, 1387–1402 (2005)CrossRefGoogle Scholar
  4. 4.
    Li, H., Shen, T., Smith, M., Fujiwara, I., Vavylonis, D., Huang, X.: Automated actin filament segmentation, tracking and tip elongation measurements based on open active contour models. ISBI (2009)Google Scholar
  5. 5.
    Hadjidemetriou, S., Toomre, D., Duncan, J.: Motion tracking of the outer tips of microtubules. Medical Image Analysis 12, 689–702 (2008)CrossRefGoogle Scholar
  6. 6.
    Saban, M., Altinok, A., Peck, A., Kenney, C., Feinstein, S., Wilson, L., Rose, K., Manjunath, B.: Automated tracking and modeling of microtubule dynamics. ISBI 1, 1032–1035 (2006)Google Scholar
  7. 7.
    Smal, I., Draegestein, K., Galjart, N., Niessen, W., Meijering, E.: Particle filtering for multiple object tracking in dynamic fluorescence microscopy images: Application to microtubule growth analysis. IEEE Trans. on Medical Imaging 27, 789–804 (2008)CrossRefGoogle Scholar
  8. 8.
    Kong, K., Marcus, A., Giannakakou, P., Wang, M.: Using particle filter to track and model microtubule dynamics. ICIP 5, 517–520 (2007)Google Scholar
  9. 9.
    Gordon, N., Salmond, D., Smith, A.: Novel approach to nonlinear/nongaussian Bayesian state estimation. IEE Proceedings-F (Radar and Signal Processing) 140, 107–113 (1993)CrossRefGoogle Scholar
  10. 10.
    Isard, M., Blake, A.: Condensation–conditional density propagation for visual tracking. IJCV 29, 5–28 (1998)CrossRefGoogle Scholar
  11. 11.
    Besl, P., McKay, H.: A method for registration of 3-D shapes. TPAMI 14, 239–256 (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Hongsheng Li
    • 1
  • Tian Shen
    • 1
  • Dimitrios Vavylonis
    • 2
  • Xiaolei Huang
    • 1
  1. 1.Department of Computer Science & EngineeringLehigh UniversityUSA
  2. 2.Department of PhysicsLehigh UniversityUSA

Personalised recommendations