ECOC Random Fields for Lumen Segmentation in Radial Artery IVUS Sequences

  • Francesco Ciompi
  • Oriol Pujol
  • Eduard Fernández-Nofrerías
  • Josepa Mauri
  • Petia Radeva
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5762)


The measure of lumen volume on radial arteries can be used to evaluate the vessel response to different vasodilators. In this paper, we present a framework for automatic lumen segmentation in longitudinal cut images of radial artery from Intravascular ultrasound sequences. The segmentation is tackled as a classification problem where the contextual information is exploited by means of Conditional Random Fields (CRFs). A multi-class classification framework is proposed, and inference is achieved by combining binary CRFs according to the Error-Correcting-Output-Code technique. The results are validated against manually segmented sequences. Finally, the method is compared with other state-of-the-art classifiers.


Support Vector Machine Radial Artery Local Binary Pattern Conditional Random Field Lumen Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Cardinal, M.H.R., Meunier, J., Soulez, G., Maurice, R.L., Therasse, E., Cloutier, G.: Intravascular ultrasound image segmentation: a three-dimensional fast-marching method based on gray level distributions. TMI 25(5), 590–601 (2006)Google Scholar
  2. 2.
    Brusseau, E., de Korte, C.L., Mastik, F., Schaar, J., van der Steen, A.F.W.: Fully automatic luminal contour segmentation in intracoronary ultrasound imaging–a statistical approach. TMI 23(5), 554–566 (2004)Google Scholar
  3. 3.
    Sonka, M., Zhang, X., Siebes, M., Bissing, M.S., Dejong, S.C., Collins, S.M., McKay, C.R.: Segmentation of intravascular ultrasound images: a knowledge-based approach. TMI 14(4), 719–732 (1995)Google Scholar
  4. 4.
    Unal, G., Bucher, S., Carlier, S., Slabaugh, G., Fang, T., Tanaka, K.: Shape-driven segmentation of the arterial wall in intravascular ultrasound images. TITB 12(3), 335–347 (2008)Google Scholar
  5. 5.
    Rotger, D., Radeva, P., Fernández-Nofrerías, E., Mauri, J.: Blood detection in ivus images for 3d volume of lumen changes measurement due to different drugs administration. In: CAIP, pp. 285–292 (2007)Google Scholar
  6. 6.
    Lafferty, J., Mccallum, A., Pereira, F.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: Proc. 18th ICML, pp. 282–289. Morgan Kaufmann, San Francisco (2001)Google Scholar
  7. 7.
    Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-correcting output codes. JAIR 2, 263–286 (1995)zbMATHGoogle Scholar
  8. 8.
    Macqueen, J.B.: Some methods of classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297 (1967)Google Scholar
  9. 9.
    Bovik, A.C., Clark, M., Geisler, W.S.: Multichannel texture analysis using localized spatial filters. TPAMI 12(1), 55–73 (1990)Google Scholar
  10. 10.
    Ojala, T., Pietikäien, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. TPAMI 24(7), 971–987 (2002)Google Scholar
  11. 11.
    Demi, M., Bianchini, E., Faita, F., Gemignani, V.: Contour tracking on ultrasound sequences of vascular images. PRIA 18(4), 606–612 (2008)Google Scholar
  12. 12.
    Vishwanathan, S.V.N., Schraudolph, N.N., Schmidt, M.W., Murphy, K.P.: Accelerated training of conditional random fields with stochastic gradient methods. In: ICML 2006, pp. 969–976. ACM, New York (2006)CrossRefGoogle Scholar
  13. 13.
    Schapire, R.E.: The boosting approach to machine learning: An overview (2002)Google Scholar
  14. 14.
    Kumar, S., Hebert, M.: Discriminative fields for modeling spatial dependencies in natural images. In: Advances in Neural Information Processing Systems (2003)Google Scholar
  15. 15.
    Yedidia, J.S., Freeman, W.T., Weiss, Y.: Understanding belief propagation and its generalizations, 239–269 (January 2002)Google Scholar
  16. 16.
    Escalera, S., Pujol, O., Radeva, P.: On the decoding process in ternary error-correcting output codes. TPAMI 99(1) (2009)Google Scholar
  17. 17.
    Pujol, O.: A semi-Supervised Statistical Framework and Generative Snakes for IVUS Analysis. PhD thesis, Autonomous University of Barcelona (2004)Google Scholar
  18. 18.
    Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: COLT, pp. 144–152 (1992)Google Scholar
  19. 19.
    Rifkin, R., Klautau, A.: In defense of one-vs-all classification. JMLR 5, 101–141 (2004)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Francesco Ciompi
    • 1
    • 2
  • Oriol Pujol
    • 1
    • 2
  • Eduard Fernández-Nofrerías
    • 3
  • Josepa Mauri
    • 3
  • Petia Radeva
    • 1
    • 2
  1. 1.Dep. of Applied Mathematics and AnalysisUniversity of BarcelonaSpain
  2. 2.Computer Vision CenterBellaterraSpain
  3. 3.University Hospital “Germans Trias i Pujol”BadalonaSpain

Personalised recommendations