Abstract
An open problem in endoscopic surgery (especially with flexible endoscopes) is the absence of a stable horizon in endoscopic images. With our ”Endorientation” approach image rotation correction, even in non-rigid endoscopic surgery (particularly NOTES), can be realized with a tiny MEMS tri-axial inertial sensor placed on the tip of an endoscope. It measures the impact of gravity on each of the three orthogonal accelerometer axes. After an initial calibration and filtering of these three values the rotation angle is estimated directly. Achievable repetition rate is above the usual endoscopic video frame rate of 30Hz; accuracy is about one degree. The image rotation is performed in real-time by digitally rotating the analog endoscopic video signal. Improvements and benefits have been evaluated in animal studies: Coordination of different instruments and estimation of tissue behavior regarding gravity related deformation and movement was rated to be much more intuitive with a stable horizon on endoscopic images.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Rattner, D., Kalloo, A.: ASGE/SAGES working group on Natural Orifice Translumenal Endoscopic Surgery: White Paper. Surg. Endosc. 20, 329–333 (2006)
Holden, J., Flach, J., Donchin, Y.: Perceptual-motor coordination in an endoscopic surgery simulation. Surg. Endosc. 13, 127–132 (1999)
Cao, C.G., Milgram, P.: Disorientation in minimal access surgery: A case study. In: Proceedings of the IEA 2000/HFES 2000 Congress, vol. 4, pp. 169–172 (2000)
Koppel, D., Wang, Y.-F., Lee, H.: Automated image rectification in video-endoscopy. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 1412–1414. Springer, Heidelberg (2001)
Welch, G., Foxlin, E.: Motion tracking: No silver bullet, but a respectable arsenal. IEEE Comput. Graph. Appl. 22(6), 24–38 (2002)
Koppel, D., Wang, Y.F., Lee, H.: Robust and real-time image stabilization and rectification. In: Procs. 7th IEEE Workshop on Application of Computer Vision (WACV/MOTION 2005), vol. 1, pp. 350–355. IEEE Computer Society Press, Los Alamitos (2005)
Yeung, S.Y., Tsui, H.T., Yim, A.: Global shape from shading for an endoscope image. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 328–332. Springer, Heidelberg (1999)
Deguchi, K., Sasano, T., Arai, H., Yoshikawa, H.: 3D shape reconstruction from endoscope image sequences by the factorization method. IEICE Transactions on Information and Systems 79(9), 1329–1336 (1996)
Thormählen, T., Broszio, H., Meier, P.N.: Three-dimensional endoscopy. In: Falk Symposium No. 124, Medical Imaging in Gastroenterology and Hepatology, Hannover, September 2001, vol. 124 (2002)
Stoyanov, D., Darzi, A., Yang, G.Z.: A practical approach towards accurate dense 3D depth recovery for robotic laparoscopic surgery. Computer Aided Surgery 4(10) (June 2005)
Albitar, C., Graebling, P., Doignon, C.: Fast 3D vision with robust structured light coding. In: SPIE Medical Imaging 2009: Visualization and Image-Guided Procedures, Orlando, USA (February 2009)
Penne, J., Höller, K., Krüger, S., Feußner, H.: NOTES 3D: Endoscopes learn to see 3D; basic algorithms for a novel endoscope. In: Araújo, A.H., Vitriá, H.J. (eds.) Proceedings of VISAPP 2007, pp. 134–139 (2007)
Mirota, D., Taylor, R.H., Ishii, M., Hager, G.D.: Direct endoscopic video registration for sinus surgery. In: Medical Imaging 2009: Visualization, Image-guided Procedures and Modeling. Proceedings of the SPIE, February 2009, vol. 7261 (2009)
Hummel, J., Figl, M., Kollmann, C., Bergmann, H., Birkfellner, W.: Evaluation of a miniature electromagnetic position tracker. Med. Phys. 29(10), 2205–2212 (2002)
DIN 9300-1: Aerospace; concepts, quantities and symbols for flight dynamics; aircraft motion relative to the air; ISO 1151-1:1988 modified. Deutsches Institut Fuer Normung e.V (German National Standard) (October 1990)
Titterton, D., Weston, J.: Strapdown Inertial Navigation Technology, 2nd edn. John Wiley and Sons, Chichester (2001)
Dorobantu, R.: Simulation des Verhaltens einer low-cost Strapdown IMU unter Laborbedingungen. Schriftenreihe des IAPG (1999)
Höller, K.: Characterisation and modeling of an inertial sensor for navigation of autonomous systems. Diploma thesis, Friedrich-Alexander University Erlangen-Nuremberg (October 2005)
Kilgard, M.J.: The OpenGL Utility Toolkit (GLUT) Programming Interface API Version 3. Silicon Graphics, Inc. (1996)
Wilhelm, D., Meining, A., von Delius, S., et al.: An innovative, safe and sterile sigmoid access (ISSA) for NOTES. Endoscopy 39, 401–406 (2007)
Höller, K., Schneider, A., Jahn, J., Guttierrez, J., Wittenberg, T., Hornegger, J., Feussner, H.: Clinical evaluation of Endorientation: Gravity related rectification for endoscopic images. In: Proceedings of the ISPA 2009 (in press, 2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Höller, K. et al. (2009). Endoscopic Orientation Correction. In: Yang, GZ., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2009. MICCAI 2009. Lecture Notes in Computer Science, vol 5761. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04268-3_57
Download citation
DOI: https://doi.org/10.1007/978-3-642-04268-3_57
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04267-6
Online ISBN: 978-3-642-04268-3
eBook Packages: Computer ScienceComputer Science (R0)

