Skip to main content

Advertisement

SpringerLink
Go to cart
  • Log in
Book cover

International Conference on Medical Image Computing and Computer-Assisted Intervention

MICCAI 2009: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2009 pp 297–304Cite as

  1. Home
  2. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2009
  3. Conference paper
Spatiotemporal Atlas Estimation for Developmental Delay Detection in Longitudinal Datasets

Spatiotemporal Atlas Estimation for Developmental Delay Detection in Longitudinal Datasets

  • Stanley Durrleman21,22,
  • Xavier Pennec21,
  • Alain Trouvé22,
  • Guido Gerig23 &
  • …
  • Nicholas Ayache21 
  • Conference paper
  • 2731 Accesses

  • 47 Citations

Part of the Lecture Notes in Computer Science book series (LNIP,volume 5761)

Abstract

We propose a new methodology to analyze the anatomical variability of a set of longitudinal data (population scanned at several ages). This method accounts not only for the usual 3D anatomical variability (geometry of structures), but also for possible changes in the dynamics of evolution of the structures. It does not require that subjects are scanned the same number of times or at the same ages. First a regression model infers a continuous evolution of shapes from a set of observations of the same subject. Second, spatiotemporal registrations deform jointly (1) the geometry of the evolving structure via 3D deformations and (2) the dynamics of evolution via time change functions. Third, we infer from a population a prototype scenario of evolution and its 4D variability. Our method is used to analyze the morphological evolution of 2D profiles of hominids skulls and to analyze brain growth from amygdala of autistics, developmental delay and control children.

Keywords

  • Continuous Evolution
  • Medical Image Analysis
  • Anatomical Variability
  • Longitudinal Dataset
  • Matching Term

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Download conference paper PDF

References

  1. Qiu, A., Younes, L., Miller, M., Csernansky, J.: Parallel transport in diffeomorphisms distinguishes the time-dependent pattern of hippocampal surface deformation due to healthy aging and the dementia of the alzheimer’s type. NeuroImage 40, 68–76 (2008)

    CrossRef  Google Scholar 

  2. Gorczowski, K., Styner, M., Jeong, J.Y., Marron, J.S., Piven, J., Hazlett, H.C., Pizer, S.M., Gerig, G.: Statistical shape analysis of multi-object complexes. Transactions on Pattern Analysis and Machine Intelligence (to appear, 2009)

    Google Scholar 

  3. Khan, A., Beg, M.: Representation of time-varying shapes in the large deformation diffeomorphic framework. In: Proc. of ISBI 2008, pp. 1521–1524 (2008)

    Google Scholar 

  4. Davis, B., Fletcher, P., Bullitt, E., Joshi, S.: Population shape regression from random design data. In: Proc. of ICCV 2007, pp. 1–7 (2007)

    Google Scholar 

  5. Chandrashekara, R., Rao, A., Sanchez-Ortiz, G.I., Mohiaddin, R.H., Rueckert, D.: Construction of a statistical model for cardiac motion analysis using nonrigid image registration. In: Taylor, C.J., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 599–610. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  6. Peyrat, J.M., Delingette, H., Sermesant, M., Pennec, X., Xu, C., Ayache, N.: Registration of 4D Time-Series of Cardiac Images with Multichannel Diffeomorphic Demons. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 972–979. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  7. Declerck, J., Feldman, J., Ayache, N.: Definition of a 4D continuous planispheric transformation for the tracking and the analysis of LV motion. Medical Image Analysis 4(1), 1–17 (1998)

    Google Scholar 

  8. Perperidis, D., Mohiaddin, R.H., Rueckert, D.: Spatio-temporal free-form registration of cardiac MRI sequences. Medical Image Analysis 9(5), 441–456 (2005)

    CrossRef  Google Scholar 

  9. Vaillant, M., Miller, M., Younes, L., Trouvé, A.: Statistics on diffeomorphisms via tangent space representations. NeuroImage 23, 161–169 (2004)

    CrossRef  Google Scholar 

  10. Durrleman, S., Pennec, X., Trouvé, A., Thompson, P., Ayache, N.: Inferring brain variability from diffeomorphic deformations of currents: an integrative approach. Medical Image Analysis 12(5), 626–637 (2008)

    CrossRef  Google Scholar 

  11. Durrleman, S., Pennec, X., Trouvé, A., Ayache, N.: Statistical models of sets of curves and surfaces based on currents. Medical Image Analysis (to appear, 2009)

    Google Scholar 

  12. Durrleman, S., Pennec, X., Trouvé, A., Gerig, G., Ayache, N.: Spatiotemporal atlas estimation for developmental delay detection in longitudinal datasets. Research Report 6952, INRIA (June 2009)

    Google Scholar 

  13. Miller, M.I., Trouvé, A., Younes, L.: On the metrics and Euler-Lagrange equations of computational anatomy. Annual Review of Biomed. Eng. 4, 375–405 (2002)

    CrossRef  Google Scholar 

  14. Vaillant, M., Glaunès, J.: Surface matching via currents. In: Christensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565, pp. 381–392. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  15. Hazlett, H., Poe, M., Gerig, G., Smith, R., Provenzale, J., Ross, A., Gilmore, J., Piven, J.: Magnetic resonance imaging and head circumference study of brain size in autism. The Archives of General Psychiatry 62, 1366–1376 (2005)

    CrossRef  Google Scholar 

  16. Durrleman, S., Pennec, X., Trouvé, A., Ayache, N.: Sparse approximation of currents for statistics on curves and surfaces. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 390–398. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. INRIA - Asclepios Team-Project, Sophia Antipolis, France

    Stanley Durrleman, Xavier Pennec & Nicholas Ayache

  2. Centre de Mathématiques et Leurs Applications (CMLA), ENS-Cachan, France

    Stanley Durrleman & Alain Trouvé

  3. Scientific Computing and Imaging (SCI) Institute, University of Utah, USA

    Guido Gerig

Authors
  1. Stanley Durrleman
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Xavier Pennec
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Alain Trouvé
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Guido Gerig
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Nicholas Ayache
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. Institute of Biomedical Engineering, Imperial College London, London, UK

    Guang-Zhong Yang

  2. Centre for Medical Image Computing, University College London, London, UK

    David Hawkes

  3. Department of Computing, Imperial College London, London, UK

    Daniel Rueckert

  4. Institute of Biomedical Engineering, University of Oxford, Oxford, UK

    Alison Noble

  5. School of Computer Science, University of Manchester, Manchester, UK

    Chris Taylor

Electronic Supplementary Material

Supplementary material (3,636 KB)

Rights and permissions

Reprints and Permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Durrleman, S., Pennec, X., Trouvé, A., Gerig, G., Ayache, N. (2009). Spatiotemporal Atlas Estimation for Developmental Delay Detection in Longitudinal Datasets. In: Yang, GZ., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2009. MICCAI 2009. Lecture Notes in Computer Science, vol 5761. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04268-3_37

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-642-04268-3_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04267-6

  • Online ISBN: 978-3-642-04268-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 95.216.99.153

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.