Quantifying Brain Connectivity: A Comparative Tractography Study

  • Ting-Shuo Yo
  • Alfred Anwander
  • Maxime Descoteaux
  • Pierre Fillard
  • Cyril Poupon
  • T. R. Knösche
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5761)

Abstract

In this paper, we compare a representative selection of current state-of-the-art algorithms in diffusion-weighted magnetic resonance imaging (dwMRI) tractography, and propose a novel way to quantitatively define the connectivity between brain regions. As criterion for the comparison, we quantify the connectivity computed with the different methods. We provide initial results using diffusion tensor, spherical deconvolution, ball-and-stick model, and persistent angular structure (PAS) along with deterministic and probabilistic tractography algorithms on a human DWI dataset. The connectivity is presented for a representative selection of regions in the brain in matrices and connectograms.Our results show that fiber crossing models are able to reveal connections between more brain areas than the simple tensor model. Probabilistic approaches show in average more connected regions but lower connectivity values than deterministic methods.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Descoteaux, M., Deriche, R., Knosche, T.R., Anwander, A.: Deterministic and probabilistic tractography based on complex fibre orientation distributions. IEEE Transactions on Medical Imaging 28(2), 269–286 (2009)CrossRefGoogle Scholar
  2. 2.
    Basser, P.J., Mattiello, J., Lebihan, D.: Mr diffusion tensor spectroscopy and imaging. Biophys. J. 66(1), 259–267 (1994)CrossRefGoogle Scholar
  3. 3.
    Parker, G.J., Alexander, D.C.: Probabilistic monte carlo based mapping of cerebral connections utilising whole-brain crossing fibre information. In: Taylor, C.J., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 684–695. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Behrens, T.E., Berg, H.J., Jbabdi, S., Rushworth, M.F., Woolrich, M.W.: Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? Neuroimage 34(1), 144–155 (2007)CrossRefGoogle Scholar
  5. 5.
    Wedeen: Mapping fiber orientation spectra in cerebral white matter with fourier transform diffusion mri. In: Proc. of the 8th ISMRM, p. 82 (2000)Google Scholar
  6. 6.
    Tuch, D.S.: Q-ball imaging. Magn. Res. in. Med. 52(6), 1358–1372 (2004)Google Scholar
  7. 7.
    Jansons, K.M., Alexander, D.C.: Persistent angular structure: new insights from diffusion magnetic resonance imaging data. Inv. Prob. 19, 1031–1046 (2003)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Tournier, J.-D., Calamante, F., Connelly, A.: Robust determination of the fibre orientation distribution in diffusion mri: Non-negativity constrained super-resolved spherical deconvolution. NeuroImage 35(4), 1459–1472 (2007)CrossRefGoogle Scholar
  9. 9.
    Alexander, D.: Multiple-fibre reconstruction algorithms for diffusion mri. Ann. N.Y. Acad. Sci. 1064, 113–133 (2005)CrossRefGoogle Scholar
  10. 10.
    Friston, K.J., Harrison, L., Penny, W.D.: Dynamic Causal Modelling. NeuroImage 19(4), 1273–1302 (2003)CrossRefGoogle Scholar
  11. 11.
    Anwander, A., Tittgemeyer, M., von Cramon, D., Friederici, A., Knosche, T.: Connectivity-based parcellation of broca’s area. Cereb. Cor. 17, 816–825 (2007)CrossRefGoogle Scholar
  12. 12.
    Toussaint, N., Souplet, J., Fillard, P.: Medinria: Medical image navigation and research tool by inria. In: Proc. of MICCAI 2007 Workshop, Australia (2007)Google Scholar
  13. 13.
    Cointepas, Y., Poupon, C., Maroy, R., Rivire, D., Le Bihan, D., Mangin, J.F.: A freely available anatomist/brainvisa package for analysis of diffusion mr images. In: Proc. 9th HBM CD-Rom Neuroimage, New York, vol. 19(2) (2003)Google Scholar
  14. 14.
    Parker, G.J., Haroon, H.A., Wheeler-Kingshott, C.A.: A framework for a streamline-based probabilistic index of connectivity (pico) using a structural interpretation of mri diffusion measurements. J. Mag. Res. Imag. 18(2), 242–254 (2003)CrossRefGoogle Scholar
  15. 15.
    Cook, P.A., Bai, Y., Nedjati-Gilani, S., Seunarine, K.K., Hall, M.G., Parker, G.J., Alexander, D.C.: Camino: Open-source diffusion-mri reconstruction and processing. In: 14th Scientific Meeting of the ISMRM, p. 2759 (2006)Google Scholar
  16. 16.
    Higham, D.: Unravelling small world networks. Journal of Computational and Applied Mathematics 158(1), 61–74 (2003)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Schneider, J.W., Borlund, P.: Matrix comparison, part 2: Measuring the resemblance between proximity measures or ordination results by use of the mantel and procrustes statistics. J. Am. Soc.,Inf. Sci. and Technol. 58(11), 1596–1609 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ting-Shuo Yo
    • 1
  • Alfred Anwander
    • 1
  • Maxime Descoteaux
    • 2
  • Pierre Fillard
    • 2
  • Cyril Poupon
    • 2
  • T. R. Knösche
    • 1
  1. 1.Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
  2. 2.Neurospin / CEA Saclay, Gif-sur-YvetteFrance

Personalised recommendations