Graphical Modeling of Substitutions and Flexible Bills-of-Materials

Part of the Lecture Notes in Economics and Mathematical Systems book series (LNE, volume 636)


This chapter deals with the modeling of product substitution and flexible BOMs. In Sect. 3.1, we describe several real-world applications where product substitution occurs. Section 3.2 presents four approaches for modeling substitution: Blending models, substitution graphs, substitution hypergraphs, and task-oriented modeling. Complementary classification criteria for product substitution models are developed in Sect. 3.3. Finally, Sect. 3.4 focusses on conditions where substitution can be beneficial, requirements for organizationally implementing substitutions, and potential pitfalls that should be kept in mind.


Customer Order Input Product Conversion Activity Task Node Conversion Cost 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Balakrishnan, A., & Geunes, J. (2000). Requirements planning with substitutions: Exploiting bill-of-materials flexibility in production planning. Manufacturing & Service Operations Management, 2(2), 166–185.CrossRefGoogle Scholar
  2. Ball, M. O., Chen, C.-Y., & Zhao, Z.-Y. (2003). Material compatibility constraints for make-to-order production planning. Operations Research Letters, 31(3), 420–428.CrossRefGoogle Scholar
  3. Boyer, K., & Hult, G. (2005). Extending the supply chain: Integrating operations and marketing in the online grocery industry. Journal of Operations Management, 23(6), 642–661.CrossRefGoogle Scholar
  4. Boyer, K., Hult, G., & Frohlich, M. (2003). An exploratory analysis of extended grocery supply chain operations and home delivery. Integrated Manufacturing Systems, 14(8), 652–663.CrossRefGoogle Scholar
  5. Chen, J. (2003). Component allocation in multi-echelon assembly systems with linked substitutes. Computers & Industrial Engineering, 45(1), 43–60.CrossRefGoogle Scholar
  6. Delaney-Klinger, K., Boyer, K., & Frohlich, M. (2003). The return of online grocery shopping: A comparative analysis of Webvan and Tesco’s operational methods. TQM Magazine, 15(3), 187–196.CrossRefGoogle Scholar
  7. Di Penta, M., & Troiano, L. (2005). Using fuzzy logic to relax constraints in GA-based service composition (Working paper). Benevento, Italy: Research Centre on Software Technology, Department of Engineering, University of Sannio.Google Scholar
  8. Ervolina, T., Ettl, M., Lee, Y., & Peters, D. (2009). Managing product availability in an assemble-to-order supply chain with multiple customer segments. OR Spectrum, 31(1), 257–280.CrossRefGoogle Scholar
  9. Ettl, M., Huang, P., Sourirajan, K., & Cheng, F. (2006a). Product offering conditioning in assemble-to-order supply chains (Working paper). Yorktown Heights, NY: IBM Research Division, Thomas J. Watson Research Center.Google Scholar
  10. Gallego, G., Katircioglu, K., & Ramachandran, B. (2006). Semiconductor inventory management with multiple grade parts and downgrading. Production Planning & Control, 17(7), 689–700.CrossRefGoogle Scholar
  11. Gallego, G., & Phillips, R. (2004). Revenue management of flexible products. Manufacturing & Service Operations Management, 6(4), 321–337.CrossRefGoogle Scholar
  12. Gallo, G., & Pallottino, S. (1992). Hypergraph models and algorithms for the assembly problem (Working paper). Pisa, Italy: Dipartimento di Informatica, Universita di Pisa.Google Scholar
  13. Gallo, G., & Scutella, M. (1998a). Directed hypergraphs as a modelling paradigm. Rivista AMASES, 21, 97–123.Google Scholar
  14. Hsu, A., & Bassok, Y. (1999). Random yield and random demand in a production system with downward substitution. Operations Research, 47(2), 277–290.CrossRefGoogle Scholar
  15. Kallrath, J. (2005). Solving planning and design problems in the process industry using mixed integer and global optimization. Annals of Operations Research, 140(1), 339–373.CrossRefGoogle Scholar
  16. Katsaliaki, K., & Brailsford, S. (2007). Using simulation to improve the blood supply chain. Journal of the Operational Research Society, 58, 219–227.Google Scholar
  17. Kennedy, W. J., Patterson, J. W., & Fredendall, L. D. (2002). An overview of recent literature on spare parts inventories. International Journal of Production Economics, 76(2), 201–215.CrossRefGoogle Scholar
  18. Lang, J. C., & Domschke, W. (2008). Efficient reformulations for dynamic lot-sizing problems with product substitution. OR Spectrum. doi:10.1007/s00291-008-0148-1.Google Scholar
  19. Meyr, H. (2004a). Simultane Losgrößen-und Reihenfolgeplanung bei mehrstufiger kontinuierlicher Fertigung. Zeitschrift für Betriebswirtschaft, 74, 585–610.Google Scholar
  20. Ozturan, C. (2004). Network flow models for electronic barter exchanges. Journal of Organizational Computing and Electronic Commerce, 14(3), 175–194.CrossRefGoogle Scholar
  21. Schultmann, F., Fröhling, M., & Rentz, O. (2002). Demontageplanung und -steuerung mit Enterprise-Resource- und Advanced-Planning-Systemen. Wirtschaftsinformatik, 44(6), 557–565.Google Scholar
  22. Scott, C., & Scott, J. (2006). Efficient allocation of online grocery orders. International Journal of Productivity and Quality Management, 1(1), 88–102.Google Scholar
  23. Thomas, D. J., & Warsing, D. P. (2007). A periodic inventory model for stocking modular components. Production and Operations Management, 16(3), 343–359.CrossRefGoogle Scholar
  24. Woudhuysen, J. (2001). E-fulfilment: The opportunities for the future: Part one. Interactive Marketing, 2(3), 219–229.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Law, Business and Economics Chair of Operations ResearchTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations