Production and Operations Management: Models and Algorithms

Part of the Lecture Notes in Economics and Mathematical Systems book series (LNE, volume 636)


This chapter intends to give an overview of the literature on dynamic lot-sizing models and stochastic transshipment models. These two types of models are used as a basis for developing models with substitution in the following chapters. Section 2.1 contains a classification of models for dynamic lot-sizing / production planning, and selected models. In Sect. 2.2, we give a brief overview of available methods for solving deterministic dynamic lot-sizing problems modeled using mixed-integer linear programming (MILP). Section 2.3 introduces transshipment problems and presents a classification scheme for transshipment models. Section 2.4 reviews selected solution approaches that can be applied to stochastic inventory control models such as transshipment problems.


Valid Inequality Replenishment Policy Transshipment Problem Common Random Numbers Production Planning Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aissaoui, N., Haouari, M., & Hassini, E. (2007). Supplier selection and order lot sizing modeling: A review. Computers & Operations Research, 34(12), 3516–3540.Google Scholar
  2. Akartunalı, K., & Miller, A. (2009). A heuristic approach for big bucket multi-level production planning problems. European Journal of Operational Research, 193(2), 396–411.Google Scholar
  3. Alfieri, A., Brandimarte, P., & D’Orazio, S. (2002). LP-based heuristics for the capacitated lot-sizing problem: The interaction of model formulation and solution algorithm. International Journal of Production Research, 40(2), 441–458.Google Scholar
  4. Almada-Lobo, B., Klabjan, D., Carravilla, M., & Oliveira, J. (2007). Single machine multi-product capacitated lot sizing with sequence-dependent setups. International Journal of Production Research, 45(20), 4873–4894.Google Scholar
  5. Almada-Lobo, B., Oliveira, J., & Carravilla, M. A. (2008). A note on “the capacitated lot-sizing and scheduling problem with sequence-dependent setup costs and setup times”. Computers & Operations Research, 35(4), 1374–1376.Google Scholar
  6. Archibald, T. W. (2007). Modelling replenishment and transshipment decisions in periodic review multilocation inventory systems. Journal of the Operational Research Society, 58(7), 948–956.Google Scholar
  7. Balakrishnan, A., & Geunes, J. (2000). Requirements planning with substitutions: Exploiting bill-of-materials flexibility in production planning. Manufacturing & Service Operations Management, 2(2), 166–185.Google Scholar
  8. Banerjee, A., Burton, J., & Banerjee, S. (2003). A simulation study of lateral shipments in single supplier, multiple buyers supply chain networks. International Journal of Production Economics, 81–82, 103–114.Google Scholar
  9. Barnhart, C., Johnson, E., Nemhauser, G., Savelsbergh, M., & Vance, P. (1998). Branch-and-price: Column generation for solving huge integer programs. Operations Research, 46(3), 316–329.Google Scholar
  10. Bayindir, Z., Erkip, N., & Guellue, R. (2007). Assessing the benefits of remanufacturing option under one-way substitution and capacity constraint. Computers & Operations Research, 34(2), 487–514.Google Scholar
  11. Belvaux, G., & Wolsey, L. A. (2000). bc-prod: A specialized branch-and-cut system for lot-sizing problems. Management Science, 46(5), 724–738.Google Scholar
  12. Belvaux, G., & Wolsey, L. A. (2001). Modelling practical lot-sizing problems as mixed-integer programs. Management Science, 47(7), 993–1007.Google Scholar
  13. Ben-Tal, A., & Nemirovski, A. (2002). Robust optimization – methodology and applications. Mathematical Programming, 92(3), 453–480.Google Scholar
  14. Beraldi, P., Ghiani, G., Grieco, A., & Guerriero, E. (2006). Fix and relax heuristic for a stochastic lot-sizing problem. Computational Optimization and Applications, 33(2), 303–318.Google Scholar
  15. Beraldi, P., Ghiani, G., Grieco, A., & Guerriero, E. (2008). Rolling-horizon and fix-and-relax heuristics for the parallel machine lot-sizing and scheduling problem with sequence-dependent set-up costs. Computers & Operations Research, 35(11), 3644–3656.Google Scholar
  16. Bhaumik, P., & Kataria, S. (2006). Lateral transshipment for managing excesses and shortages in a multilocation inventory system: A case study of Timex Watches Ltd. International Journal of Services Technology and Management, 7(5), 602–614.Google Scholar
  17. Brahimi, N., Dauzere-Peres, S., & Najid, N. (2006). Capacitated multi-item lot-sizing problems with time windows. Operations Research, 54(5), 951–967.Google Scholar
  18. Brandimarte, P. (2006). Multi-item capacitated lot-sizing with demand uncertainty. International Journal of Production Research, 44(15), 2997–3022.Google Scholar
  19. Caserta, M., & Rico, E. (2009). A cross entropy-lagrangean hybrid algorithm for the multi-item capacitated lot-sizing problem with setup times. Computers & Operations Research, 36(2), 530–548.Google Scholar
  20. Chand, S., Hsu, V., & Sethi, S. (2002). Forecast, solution, and rolling horizons in operations management problems: A classified bibliography. Manufacturing & Service Operations Management, 4(1), 25–43.Google Scholar
  21. Cheung, K., & Lee, H. (2002). The inventory benefit of shipment coordination and stock rebalancing in a supply chain. Management Science, 48(2), 300–306.Google Scholar
  22. Chou, M., Sim, M., & So, K. (2006). A robust optimization framework for analyzing distribution systems with transshipment (Working paper). Singapore: School of Business, National University of Singapore.Google Scholar
  23. Comez, N., Stecke, K. E., & Cakanyldrm, M. (2006). Virtual pooling considering transshipment lead time (Working paper). Dallas, TX: School of Management, University of Texas at Dallas.Google Scholar
  24. de Araujo, S., Arenales, M., & Clark, A. (2007). Joint rolling-horizon scheduling of materials processing and lot-sizing with sequence-dependent setups. Journal of Heuristics, 13(4), 337–358.Google Scholar
  25. Degraeve, Z., & Jans, R. (2007). A new Dantzig-Wolfe reformulation and branch-and-price algorithm for the capacitated lot-sizing problem with setup times. Operations Research, 55(5), 909–920.Google Scholar
  26. Denizel, M., Altekin, F. T., Süral, H., & Stadtler, H. (2008). Equivalence of the LP relaxations of two strong formulations for the capacitated lot-sizing problem with setup times. OR Spectrum, 30(4), 773–785.Google Scholar
  27. Denton, B., & Gupta, D. (2004). Strategic inventory deployment in the steel industry. IIE Transactions, 36(11), 1083–1097.Google Scholar
  28. Desaulniers, G., Desrosiers, J., Erdmann, A., Solomon, M., & Soumis, F. (2002). VRP with pickup and delivery. In P. Toth & D. Vigo (Eds.), The vehicle routing problem (pp. 225–242). Philadelphia: SIAM.Google Scholar
  29. Diaby, M., Bahl, H., Karwan, M., & Zionts, S. (1992a). Capacitated lot-sizing and scheduling by lagrangean relaxation. European Journal of Operational Research, 59(3), 444–458.Google Scholar
  30. Domschke, W. (1997). Logistik: Rundreisen und Touren (4th edn.). Munich: Oldenbourg WissenschaftsverlagGoogle Scholar
  31. Domschke, W., & Scholl, A. (2005). Grundlagen der Betriebswirtschaftslehre (3rd edn.). Berlin: Springer.Google Scholar
  32. Domschke, W., Scholl, A., & Voß, S. (1997). Produktionsplanung – Ablauforganisatorische Aspekte (2nd edn.). Berlin: Springer.Google Scholar
  33. Drexl, A., & Kimms, A. (1997). Lot sizing and scheduling – survey and extensions. European Journal of Operational Research, 99(2), 221–235.Google Scholar
  34. Eppen, G., & Martin, R. (1987). Solving multi-item capacitated lot-sizing problems using variable redefinition. Operations Research, 35(6), 832–848.Google Scholar
  35. Ertogral, K., & Wu, S. (2000). Auction-theoretic coordination of production planning in the supply chain. IIE Transactions, 32(10), 931–940.Google Scholar
  36. Evers, P. (2001). Heuristics for assessing emergency transshipments. European Journal of Operational Research, 129(2), 311–316.Google Scholar
  37. Federgruen, A., Meissner, J., & Tzur, M. (2007). Progressive interval heuristics for multi-item capacitated lot sizing problems. Operations Research, 55(3), 490.Google Scholar
  38. Fisher, M. (1981). The lagrangian relaxation method for solving integer programming problems. Management Science, 27(1), 1–18.Google Scholar
  39. Fleischmann, B. (1994). The discrete lot-sizing and scheduling problem with sequence-dependent setup costs. European Journal of Operational Research, 75(2), 395–404.Google Scholar
  40. Fleischmann, B. (2001). On the use and misuse of holding cost models. In P. Kischka, U. Leopold-Wildburger, R. Möhring, & F.-J. Radermacher (Eds.), Models, methods and decision support for management: Essays in honor of Paul Stähly (pp. 147–164). Heidelberg: Physica.Google Scholar
  41. Fleischmann, B., & Meyr, H. (1997). The general lotsizing and scheduling problem. OR Spectrum, 19(1), 11–21.Google Scholar
  42. Fu, M. C. (2006). Stochastic gradient estimation. In S. Henderson & B. Nelson (Eds.), Handbook on operations research and management science: Simulation. Amsterdam: Elsevier.Google Scholar
  43. Gebhard, M., & Kuhn, H. (2007). Robuste hierarchische Produktionsplanung mit Bedarfsszenarien. In A. Otto & R. Obermaier (Eds.), Logistikmanagement 2007: Analyse, Bewertung und Gestaltung logistischer Systeme (pp. 161–183). Wiesbaden, Germany: Gabler / Deutscher Universitäts-Verlag.Google Scholar
  44. Geunes, J. (2003). Solving large-scale requirements planning problems with component substitution options. Computers & Industrial Engineering, 44(3), 475–491.Google Scholar
  45. Gosavi, A. (2003). Simulation-based optimization: Parametric optimization techniques and reinforcement learning. Boston: Kluwer.Google Scholar
  46. Guan, Y., Ahmed, S., Nemhauser, G., & Miller, A. (2006). A branch-and-cut algorithm for the stochastic uncapacitated lot-sizing problem. Mathematical Programming, 105(1), 55–84.Google Scholar
  47. Gupta, D., & Magnusson, T. (2005). The capacitated lot-sizing and scheduling problem with sequence-dependent setup costs and setup times. Computers & Operations Research, 32(4), 727–747.Google Scholar
  48. Haase, K. (1996). Capacitated lot-sizing with sequence dependent setup costs. OR Spectrum, 18(1), 51–59.Google Scholar
  49. Haase, K. (2001). Beschaffungs-Controlling – Kapitalwertorientierte Bestellmengenplanung bei Mengenrabatten und dynamischer Nachfrage. Zeitschrift für Betriebswirtschaft, 71, 19–31.Google Scholar
  50. Haase, K., & Kimms, A. (2000). Lot sizing and scheduling with sequence-dependent setup costs and times and efficient rescheduling opportunities. International Journal of Production Economics, 66(2), 159–169.Google Scholar
  51. Hax, A., & Meal, H. (1975). Hierarchical integration of production planning and scheduling. In M. Geisler (Ed.), TIMS studies in the management sciences (Vol. 1, pp. 53–69). Amsterdam: North-Holland.Google Scholar
  52. Helber, S. (1994). Kapazitätsorientierte Losgrößenplanung in PPS-Systemen. Metzler & Poeschel Verlag für Wissenschaft und Forschung, Stuttgart, Germany.Google Scholar
  53. Helber, S., & Sahling, F. (2008). A Fix-and-Optimize Approach for the multi-level capacitated lot sizing problem (Working paper). Hannover, Germany: Institut für Produktionswirtschaft. Leibniz Universität Hannover.Google Scholar
  54. Herer, Y., Tzur, M., & Yücesan, E. (2006). The multilocation transshipment problem. IIE Transactions, 38(3), 185–200.Google Scholar
  55. Hsu, V. N., Li, C. L., & Xiao, W. Q. (2005). Dynamic lot size problems with one-way product substitution. IIE Transactions, 37, 201–215.Google Scholar
  56. Huisman, D., Jans, R., Peeters, M., & Wagelmans, A. (2005). Combining column generation and lagrangian relaxation. In D. Guy, S. Jacques, & M. Marius (Eds.), Column generation (pp. 247–270). Berlin: Springer.Google Scholar
  57. Inderfurth, K. (2004). Optimal policies in hybrid manufacturing/remanufacturing systems with product substitution. International Journal of Production Economics, 90(3), 325–343.Google Scholar
  58. Iravani, S., Lien, R., Smilowitz, K., & Tzur, M. (2005). Design principles for effective transshipment networks (Working paper). Evanston, IL: IE/MS department, Northwestern University, IL.Google Scholar
  59. Jans, R., & Degraeve, Z. (2006). Modeling industrial lot sizing problems: A review. International Journal of Production Research, 46(6), 1619–1643.Google Scholar
  60. Jans, R., & Degraeve, Z. (2007). Meta-heuristics for dynamic lot sizing: A review and comparison of solution approaches. European Journal of Operational Research, 177(3), 1855–1875.Google Scholar
  61. Kallrath, J. (2005). Solving planning and design problems in the process industry using mixed integer and global optimization. Annals of Operations Research, 140(1), 339–373.Google Scholar
  62. Kallrath, J., & Maindl, T. (2006). Real optimization with SAP APO. Berlin: Springer.Google Scholar
  63. Karimi, B., Fatemi Ghomi, S., & Wilson, J. (2003). The capacitated lot sizing problem: A review of models and algorithms. Omega, 31(5), 365–378.Google Scholar
  64. Kleber, R., & Inderfurth, K. (2007). A heuristic approach for inventory control of spare parts after end-of-production. In A. Otto & R. Obermaier (Eds.), Logistikmanagement 2007: Analyse, Bewertung und Gestaltung logistischer Systeme (pp. 185–200). Wiesbaden, Germany: Gabler / Deutscher Universitäts-Verlag.Google Scholar
  65. Kolda, T., Lewis, R., & Torczon, V. (2004). Optimization by direct search: New perspectives on some classical and modern methods. SIAM Review, 45, 385–482.Google Scholar
  66. Kouvelis, P., & Yu, G. (1997). Robust discrete optimization and its applications. Boston: Kluwer.Google Scholar
  67. Lang, J. C. (2005). Methoden der Simulationsbasierten Optimierung. Semester thesis, Department of Law, Business Administration and Economics, Technische Universität Darmstadt, Germany.Google Scholar
  68. Law, A. (2006). Simulation modeling and analysis (4th edn.). New York: McGraw-Hill.Google Scholar
  69. Lee, C., Cetinkaya, S., & Wagelmans, A. (2001). A dynamic lot-sizing model with demand time windows. Management Science, 47(10), 1384–1395.Google Scholar
  70. Lee, Y. H., Jung, J. W., & Jeon, Y. S. (2007). An effective lateral transshipment policy to improve service level in the supply chain. International Journal of Production Economics, 106(1), 115–126.Google Scholar
  71. Leung, S. C., Lai, K. K., Ng, W., & Wu, Y. (2007a). A robust optimization model for production planning of perishable products. Journal of the Operational Research Society, 58, 413–422.Google Scholar
  72. Lewis, R., & Torczon, V. (1999). Pattern search algorithms for bound constrained minimization. SIAM Journal on Optimization, 9(4), 1082–1099.Google Scholar
  73. Lewis, R., & Torczon, V. (2000). Pattern search methods for linearly constrained minimization. SIAM Journal on Optimization, 10, 917–941.Google Scholar
  74. Lewis, R., Torczon, V., & Trosset, M. (2000). Direct search methods: Then and now. Journal of Computational and Applied Mathematics, 124(1–2), 191–207.Google Scholar
  75. Li, Y., Chen, J., & Cai, X. (2007). Heuristic genetic algorithm for capacitated production planning problems with batch processing and remanufacturing. International Journal of Production Economics, 105(2), 301–317.Google Scholar
  76. Liao, Z., & Rittscher, J. (2007a). Integration of supplier selection, procurement lot sizing and carrier selection under dynamic demand conditions. International Journal of Production Economics, 107(2), 502–510.Google Scholar
  77. Marchand, H., Martin, A., Weismantel, R., & Wolsey, L. (2002). Cutting planes in integer and mixed integer programming. Discrete Applied Mathematics, 123(1–3), 397–446.Google Scholar
  78. Meixell, M., & Norbis, M. (2008). A review of the transportation mode choice and carrier selection literature. The International Journal of Logistics Management, 19(2), 183–211.Google Scholar
  79. Meyr, H. (1999). Simultane Losgrössen-und Reihenfolgeplanung für kontinuierliche Produktionslinien: Modelle und Methoden im Rahmen des Supply Chain Management. Wiesbaden, Germany: Gabler / Deutscher Universitäts-Verlag,Google Scholar
  80. Meyr, H. (2000). Simultaneous lotsizing and scheduling by combining local search with dual reoptimization. European Journal of Operational Research, 120(2), 311–326.Google Scholar
  81. Meyr, H. (2004a). Simultane Losgrößen-und Reihenfolgeplanung bei mehrstufiger kontinuierlicher Fertigung. Zeitschrift für Betriebswirtschaft, 74, 585–610.Google Scholar
  82. Meyr, H. (2004b). Supply chain planning in the German automotive industry. OR Spectrum, 26(4), 447–470.Google Scholar
  83. Minner, S., Silver, E. A., & Robb, D. J. (2003). An improved heuristic for deciding on emergency transshipments. European Journal of Operational Research, 148(2), 384–400.Google Scholar
  84. Mulvey, J., Vanderbei, R., & Zenios, S. (1995). Robust optimization of large-scale systems. Operations Research, 43(2), 264–281.Google Scholar
  85. Parragh, S., Doerner, K., & Hartl, R. (2008a). A survey on pickup and delivery problems – part I: Transportation between customers and depot. Journal für Betriebswirtschaft, 58(1), 21–51.Google Scholar
  86. Pochet, Y., & Wolsey, L. (1991). Solving multi-item lot-sizing problems using strong cutting planes. Management Science, 37(1), 53–67.Google Scholar
  87. Pochet, Y., & Wolsey, L. (2006). Production planning by mixed integer programming. Berlin: Springer.Google Scholar
  88. Raa, B., & Aghezzaf, E. (2005). A robust dynamic planning strategy for lot-sizing problems with stochastic demands. Journal of Intelligent Manufacturing, 16(2), 207–213.Google Scholar
  89. Sahling, F., Buschkühl, L., Tempelmeier, H., & Helber, S. (2009). Solving a multi-level capacitated lot sizing problem with multi-period setup carry-over via a Fix-and-Optimize heuristic. Computers & Operations Research, 36(9), 2546–2553.Google Scholar
  90. Scholl, A. (2001). Robuste Planung und Optimierung. Grundlagen – Konzepte und Methoden – Experimentelle Untersuchungen. Berlin: Springer.Google Scholar
  91. Silver, E. (2004). An overview of heuristic solution methods. Journal of the Operational Research Society, 55(9), 936–956.Google Scholar
  92. Snyder, L. (2006). Facility location under uncertainty: A review. IIE Transactions, 38(7), 547–564.Google Scholar
  93. Spall, J. (1998). An overview of the simultaneous perturbation method for efficient optimization. Johns Hopkins APL Technical Digest, 19(4), 482–492.Google Scholar
  94. Spall, J. (2003). Introduction to stochastic search and optimization. New York: Wiley.Google Scholar
  95. Stadtler, H. (1996). Mixed integer programming model formulations for dynamic multi-item multi-level capacitated lotsizing. European Journal of Operational Research, 94(3), 561–581.Google Scholar
  96. Stadtler, H. (1997). Reformulations of the shortest route model for dynamic multi-item multi-level capacitated lotsizing. OR Spectrum, 19(2), 87–96.Google Scholar
  97. Stadtler, H. (2000). Improved rolling schedules for the dynamic single-level lot-sizing problem. Management Science, 46(2), 318–326.Google Scholar
  98. Stadtler, H. (2003). Multilevel lot sizing with setup times and multiple constrained resources: Internally rolling schedules with lot-sizing windows. Operations Research, 51(3), 487–502.Google Scholar
  99. Stammen-Hegener, C. (2002). Simultane Losgrößen-und Reihenfolgeplanung bei ein-und mehrstufiger Fertigung. Wiesbaden, Germany: Gabler / Deutscher Universitäts-Verlag.Google Scholar
  100. Suerie, C., & Stadtler, H. (2003). The capacitated lot-sizing problem with linked lot sizes. Management Science, 49(8), 1039–1054.Google Scholar
  101. Tekin, E., & Sabuncuoglu, I. (2004). Simulation optimization: A comprehensive review on theory and applications. IIE Transactions, 36(11), 1067–1081.Google Scholar
  102. Tempelmeier, H. (2006). Inventory management in supply networks – Problems, models, solutions. Norderstedt, Germany: Books on Demand.Google Scholar
  103. Tempelmeier, H. (2007). On the stochastic uncapacitated dynamic single-item lotsizing problem with service level constraints. European Journal of Operational Research, 181, 184–194.Google Scholar
  104. Tempelmeier, H., & Derstroff, M. (1996). A lagrangean-based heuristic for dynamic multilevel multiitem constrained lotsizing with setup times. Management Science, 42(5), 738–757.Google Scholar
  105. Tempelmeier, H., & Helber, S. (1994). A heuristic for dynamic multi-item multi-level capacitated lotsizing for general product structures. European Journal of Operational Research, 75(2), 296–311.Google Scholar
  106. Toledo, F., & Armentano, V. (2006). A lagrangian-based heuristic for the capacitated lot-sizing problem in parallel machines. European Journal of Operational Research, 175(2), 1070–1083.Google Scholar
  107. Vanderbeck, F. (2003). Automated Dantzig-Wolfe re-formulation or how to exploit simultaneously original formulation and column generation re-formulation (Working paper). Bordeaux, France: Department of Applied Mathematics, University Bordeaux.Google Scholar
  108. Vyve, M. V., & Wolsey, L. A. (2006). Approximate extended formulations. Mathematical Programming, 105(2), 501–522.Google Scholar
  109. Wagner, H., & Whitin, T. (1958). Dynamic version of the economic lot sizing model. Management Science, 5(1), 89–96.Google Scholar
  110. Wee, K., & Dada, M. (2005). Optimal policies for transshipping inventory in a retail network. Management Science, 51(10), 1519–1533.Google Scholar
  111. Wilhelm, W. (2001). A technical review of column generation in integer programming. Optimization and Engineering, 2(2), 159–200.Google Scholar
  112. Wolpert, D., & Macready, W. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1), 67–82.Google Scholar
  113. Wolsey, L. (1997). MIP modelling of changeovers in production planning and scheduling problems. European Journal of Operational Research, 99(1), 154–165.Google Scholar
  114. Wolsey, L. A. (2003a). Solving multi-item lot-sizing problems with an MIP solver using classification and reformulation. Management Science, 48(12), 1587–1602.Google Scholar
  115. Wolsey, L. A. (2006). Lot-sizing with production and delivery time windows. Mathematical Programming: Series A, 107, 471–489.Google Scholar
  116. Xia, W., & Wu, Z. (2007). Supplier selection with multiple criteria in volume discount environments. Omega, 35, 494–504.Google Scholar
  117. Zhang, J. (2005). Transshipment and its impact on supply chain members performance. Management Science, 51(10), 1534–1539.Google Scholar
  118. Zhu, X., & Wilhelm, W. (2006). Scheduling and lot sizing with sequence-dependent setup: A literature review. IIE Transactions, 38(11), 987–1007.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Law, Business and Economics Chair of Operations ResearchTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations