Advertisement

Solving Nurse Rostering Problems Using Soft Global Constraints

  • Jean-Philippe Métivier
  • Patrice Boizumault
  • Samir Loudni
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5732)

Abstract

Nurse Rostering Problems (NRPs) consist of generating rosters where required shifts are assigned to nurses over a scheduling period satisfying a number of constraints. Most NRPs in real world are NP-hard and are particularly challenging as a large set of different constraints and specific nurse preferences need to be satisfied. The aim of this paper is to show how NRPs can be easily modelled and efficiently solved using soft global constraints. Experiments on real-life problems and comparison with ad’hoc OR approaches are detailed.

Keywords

Constraint Programming Soft Constraint Global Constraint Schedule Period Deterministic Finite Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Meyer auf’m Hofe, H.: Solving rostering tasks as constraint optimisation. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 191–212. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Azaiez, M., Al Sharif, S.: A 0-1 goal programming model for nurse scheduling. Computers and Operations Research 32(3), 491–507 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Brucker, P., Burke, E., Curtois, T., Qu, R., Vanden Berghe, G.: A shift sequence based approach for nurse scheduling and a new benchmark dataset. J. of Heuristics (to appear, 2009)Google Scholar
  4. 4.
    Burke, E., De Causmaecker, P., Vanden Berghe, G.: A hybrid tabu search algorithm for the nurse rostering problem. In: McKay, B., Yao, X., Newton, C.S., Kim, J.-H., Furuhashi, T. (eds.) SEAL 1998. LNCS (LNAI), vol. 1585, pp. 187–194. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Burke, E., De Causmaecker, P., Vanden Berghe, G., Van Landeghem, H.: The state of the art of nurse rostering. Journal of Scheduling 7(6), 441–499 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Burke, E., Curtois, T., Qu, R., Vanden Berge, G.: A time predefined variable depth search for nurse rostering, TR 2007-6, University of Nottingham (2007)Google Scholar
  7. 7.
    Burke, E., Li, J., Qu, R.: A hybrid model of Integer Programming and VNS for highly-constrained nurse rostering problems. In: EJOR 2009 (to appear, 2009)Google Scholar
  8. 8.
    Cooper, M., de Givry, S., Sanchez, M., Schiex, T., Zytnicki, M.: Virtual arc consistency for Weighted CSP. In: AAAI 2008 (2008)Google Scholar
  9. 9.
    Cooper, M., Schiex, T.: Arc consistency for soft constraints. Artificial Intelligence 154(1-2), 199–227 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Demassey, S., Pesant, G., Rousseau, L.-M.: A cost-regular based hybrid column generation approach. Constraints 11(4), 315–333 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Ernst, A., Jiang, H., Krishnamoorthy, M., Sier, D.: Staff scheduling and rostering: A review of applications, methods and models. EJOR 153(1), 3–27 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hansen, P., Mladenovic, N., Perez-Britos, D.: Variable neighborhood decomposition search. Journal of Heuristics 7(4), 335–350 (2001)CrossRefzbMATHGoogle Scholar
  13. 13.
    Harvey, W., Ginsberg, M.: Limited Discrepancy Search. In: IJCAI 1995, pp. 607–614 (1995)Google Scholar
  14. 14.
  15. 15.
    Ikegami, A., Niwa, A.: A subproblem-centric model and approach to the nurse scheduling problem. Mathematical Programming 97(3), 517–541 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Karp, R.: Reducibility among combinatorial problems. In: Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)CrossRefGoogle Scholar
  17. 17.
    Li, H., Lim, A., Rodrigues, B.: A hybrid AI approach for nurse rostering problem. In: SAC, pp. 730–735 (2003)Google Scholar
  18. 18.
    Loudni, S., Boizumault, P.: Combining VNS with constraint programming for solving anytime optimization problems. EJOR 191(3), 705–735 (2008)CrossRefzbMATHGoogle Scholar
  19. 19.
    Menana, J., Demassey, S.: Sequencing and counting with the multicost-regular constraint. In: van Hoeve, W.J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547, pp. 178–192. Springer, Heidelberg (2009)Google Scholar
  20. 20.
    Métivier, J.-P., Boizumault, P., Loudni, S.: Softening gcc and regular with preferences. In: SAC 2009, pp. 1392–1396 (2009)Google Scholar
  21. 21.
    Millar, H., Kiragu, M.: Cyclic and non-cyclic sheduling of 12h shift nurses by network programming. EJOR 104(1), 582–592 (1996)zbMATHGoogle Scholar
  22. 22.
    Mladenovic, N., Hansen, P.: Variable neighborhood search. Computers & OR 24(11), 1097–1100 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Musa, A., Saxena, U.: Scheduling nurses using goal-programming techniques. IIE transactions 16, 216–221 (1984)CrossRefGoogle Scholar
  24. 24.
    Ozkarahan, I.: The zero-one goal programming model of a flexible nurse scheduling support system. In: Int. Industrial Engineering Conference, pp. 436–441 (1989)Google Scholar
  25. 25.
    Pesant, G.: A regular language membership constraint for finite sequences of variables. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482–495. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  26. 26.
    Petit, T., Régin, J.-C., Bessière, C.: Specific filtering algorithms for over-constrained problems. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 451–463. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  27. 27.
    Qu, R., He, F.: A hybrid constraint programming approach for nurse rostering problems. In: 28th SGAI International Conference on AI, pp. 211–224 (2008)Google Scholar
  28. 28.
    Régin, J.-C.: Generalized arc consistency for global cardinality constraint. In: AAAI 1996, pp. 209–215 (1996)Google Scholar
  29. 29.
    Régin, J.-C., Gomes, C.: The cardinality matrix constraint. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 572–587. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  30. 30.
    Régin, J.-C., Petit, T., Bessière, C., Puget, J.-F.: An original constraint based approach for solving over-constrained problems. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 543–548. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  31. 31.
    Simonis, H.: Models for global constraint applications. Constraints 12(1), 63–92 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Valouxis, C., Housos, E.: Hybrid optimization techniques for the workshift and rest assignment of nursing personnel. A.I. in Medicine 20(2), 155–175 (2000)Google Scholar
  33. 33.
    van Hoeve, W., Pesant, G., Rousseau, L.-M.: On global warming: Flow-based soft global constraints. Journal of Heuristics 12(4-5), 347–373 (2006)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jean-Philippe Métivier
    • 1
  • Patrice Boizumault
    • 1
  • Samir Loudni
    • 1
  1. 1.GREYC (CNRS - UMR 6072)Université de CaenCaen Cedex

Personalised recommendations