Skip to main content

Emergence of Synchronization in Transportation Networks with Biologically Inspired Decentralized Control

  • Chapter

Part of the book series: Studies in Computational Intelligence ((SCI,volume 254))

Summary

The efficient and reliable operation of material flows in transportation networks is a subject of broad economic interest. Important applications include the control of signalized intersections in urban road systems and the planning and scheduling of logistic processes. Traditional approaches to operating material flow networks are however known to have severe disadvantages: centralized controllers suffer from their high computational demands that make an on-line control hardly possible in larger networks, whereas a decentralized control using clearing policies leads under rather general conditions to instabilities.

A particular solution for optimizing flows on a network that has attracted considerable interest in the case of urban traffic networks over the last 50 years is synchronizing sequences of traffic lights so that “green waves” emerge. However, the practical applicability of this very basic synchronization strategy is unfortunately restricted to only few special cases. More recent synchronization approaches to optimizing transportation networks suggest a mutual adjustment of the service periods of neighboring facilities by exclusively local information transfer, yielding self-organized phase synchronization. Traditionally, these concepts have been motivated by theoretical results on the dynamics of coupled phase oscillators, which model the switching cycle of traffic lights at signalized intersections. The corresponding results are thoroughly reviewed in this chapter.

As an alternative approach that may help to overcome the problems of standard central as well as decentralized controllers and make an adaptive and purely demand-driven traffic light control practically applicable, a self-organization mechanism of conflicting flows is proposed that is inspired by oscillatory phenomena of pedestrian and animal flows at intersections or bottlenecks. For this purpose, a permeability function is introduced that allows to sequentially serve the different possible flow directions at an intersection in a fully demand-dependent way. The self-organized optimization achieved by the presented approach is demonstrated to be closely linked to synchronization of the oscillatory service dynamics at the different intersections in the network. For regular grid topologies, different synchronization regimes are present depending on the inertia of the switching from one service state to the next one. The dependence of this observation on the regularity of the considered network is tested. The reported results contribute to an improved understanding of the conditions that have to be present for efficiently operating material flow networks by a decentralized control, which is of major importance for future implementations in real-world traffic or production systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chowdhury, D., Santen, L., Schadschneider, A.: Statistical physics of vehicular traffic and some related systems. Phys. Rep. 329, 199–329 (2000)

    Article  MathSciNet  Google Scholar 

  2. Helbing, D.: Traffic and related self-driven many-particle systems. Rev. Mod. Phys. 73, 1067–1141 (2001)

    Article  Google Scholar 

  3. Kerner, B.S.: The Physics of Traffic: Empirical Freeway Pattern Features, Engineering Applications, and Theory. Springer, Berlin (2004)

    Google Scholar 

  4. Helbing, D.: Modelling supply networks and business cycles as unstable transport phenomena. New J. Phys. 5, 90.1–90.28 (2003)

    Article  Google Scholar 

  5. Howard, J.: Mechanics of Motor Proteins and the Cytoskeleton. Sinauer Associates, Sunderland (2001)

    Google Scholar 

  6. Parmeggiani, A., Franosch, T., Frey, E.: Phase Coexistence in Driven One-Dimensional Transport. Phys. Rev. Lett. 90, 086601 (2003)

    Article  Google Scholar 

  7. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., Watson, J.D.: Molecular Biology of the Cell, 3rd edn. Garland, New York (2004)

    Google Scholar 

  8. Chowdhury, D., Basu, A., Garai, A., Greulich, P., Nishinari, K., Schadschneider, A., Tripathi, T.: Intra-cellular traffic: bio-molecular motors on filamentary tracks. Europ. Phys. J. B 64, 593–600 (2008)

    Article  Google Scholar 

  9. Nakagaki, T., Kobayashi, R., Nishiura, Y., Ueda, T.: Obtaining multiple separate food sources: behavioural intelligence in the Physarum plasmodium. Proc. R. Soc. Lond. B 271, 2305–2310 (2004)

    Article  Google Scholar 

  10. Bebber, D.P., Hynes, J., Darrah, P.R., Boddy, L., Fricker, M.D.: Biological solutions to transport network design. Proc. R. Soc. B 274, 2307–2315 (2007)

    Article  Google Scholar 

  11. Helbing, D., Lämmer, S., Lebacque, J.-P.: Self-organized control of irregular or perturbed network traffic. In: Deissenberg, C., Hartl, R.F. (eds.) Optimal Control and Dynamic Games, pp. 239–274. Springer, Dordrecht (2005)

    Chapter  Google Scholar 

  12. Newell, G.F.: Applications of Queueing Theory. Chapman and Hall, London (1971)

    MATH  Google Scholar 

  13. Bose, S.K.: An Introduction to Queueing Systems. Springer, New York (2001)

    Google Scholar 

  14. Lämmer, S.: Reglerentwurf zur dezentralen Online-Steuerung von Lichtsignalanlagen in Straßennetzwerken, PhD thesis, Dresden University of Technology (2007)

    Google Scholar 

  15. Kumar, P.R., Seidman, T.I.: Dynamic instabilities and stabilization methods in distributed real-time scheduling of manufacturing systems. IEEE Trans. Automat. Contr. 35, 289–298 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lämmer, S., Kori, H., Peters, K., et al.: Decentralised control of material or traffic flows in networks using phase synchronisation. Physica A 363, 39–47 (2006)

    Article  Google Scholar 

  17. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization - A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  18. Boccaletti, S., Kurths, J., Osipov, G., et al.: The synchronization of chaotic systems. Phys. Rep. 366, 1–101 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Pikovsky, A., Maistrenko, Y. (eds.): Synchronization: Theory and Application. Kluwer, Dordrecht (2003)

    MATH  Google Scholar 

  20. Strogatz, S.: Sync: The Emerging Science of Spontaneous Order. Hyperion, New York (2003)

    Google Scholar 

  21. Osipov, G.V., Kurths, J., Zhou, C.S.: Synchronization in Oscillatory Networks. Springer, Berlin (2007)

    MATH  Google Scholar 

  22. Arenas, A., Diaz-Guilera, A., Kurths, J., et al.: Synchronization in Complex Networks. Phys. Rep. 469, 93–153 (2008)

    Article  MathSciNet  Google Scholar 

  23. Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51, 4282–4286 (1995)

    Article  Google Scholar 

  24. Mueller, E.A.: Aspects of the History of Traffic Signals. IEEE Trans. Vehic. Technol. 19, 6–17 (1970)

    Article  Google Scholar 

  25. Marsh, B.W.: Traffic Control. Ann. Amer. Acad. Polit. Soc. Sci. 133, 90–113 (1927)

    Article  Google Scholar 

  26. Morgan, J.T., Little, J.D.C.: Synchronizing traffic signals for maximal bandwidth. Operat. Res. 12, 896–912 (1964)

    Article  Google Scholar 

  27. Little, J.D.C.: The Synchronization of Traffic Signals by Mixed-Integer Linear Programming. Operat. Res. 14, 568–594 (1966)

    Article  MATH  Google Scholar 

  28. Little, J.D.C., Kelson, M.D., Gartner, N.H.: MAXBAND: A program for setting signals on arteries and triangular networks. Transp. Res. Rec. 795, 40–46 (1981)

    Google Scholar 

  29. Robertson, D.I.: TRANSYT method for area traffic control. Traffic Engin. Contr. 10, 276–281 (1969)

    Google Scholar 

  30. Bazzan, A.L.C.: A distributed approach for the coordination of traffic signal agents, Autonom. Agents Multi-Agent Syst. 10, 131–164 (2005)

    Google Scholar 

  31. Robertson, D.I., Bretherton, R.D.: Optimizing networks of traffic signals in real time – the SCOOT method. IEEE Trans. Vehic. Technol. 40, 11–15 (1991)

    Article  Google Scholar 

  32. Gartner, H.N.: OPAC: A demand-responsive strategy for traffic signal control. Transp. Res. Rec. 906, 75–84 (1983)

    Google Scholar 

  33. Henry, J.J., Farges, J.L., Tufal, J.: The PRODYN Real Time Traffic Algorithm. In: 4th IFAC/IFIP/IFORS Int. Conf. Control in Transportation Systems, Baden-Baden, pp. 307–311 (1983)

    Google Scholar 

  34. Boillot, F., Blosseville, J., Lesort, J., et al.: Optimal signal control of urban traffic networks. In: 6th Int. Conf. Road Traffic Monitoring and Control, vol. 355, pp. 75–79 (1992)

    Google Scholar 

  35. Mauro, V., Di Taranto, C.: UTOPIA. In: Perrin, J.-P. (ed.) Control, Computers, Communications in Transportation, pp. 245–252. Pergamon, Oxford (1990)

    Google Scholar 

  36. Mirchandani, P., Head, L.: A real-time traffic signal control system: architecture, algorithms, and analysis. Transp. Res. C 9, 415–432 (2001)

    Article  Google Scholar 

  37. Friedrich, B.: Ein verkehrsadaptives Verfahren zur Steuerung von Lichtsignalanlagen. PhD Thesis, Technical University of Munich (1997)

    Google Scholar 

  38. Bielefeldt, C., Busch, F.: MOTION – a new on-line traffic signal network control system. In: 7th Int. Conf. Road Traffic Monitoring and Control, London, pp. 55–59 (1994)

    Google Scholar 

  39. Dinopoulou, V., Diakaki, C., Papageorgiou, M.: Simulation investigations of the traffic-responsive urban control strategy TUC. Intell. Transp. Syst., 458–463 (2000)

    Google Scholar 

  40. Brockfeld, E., Barlovic, R., Schadschneider, A., et al.: Optimizing traffic lights in a cellular automaton model for city traffic. Phys. Rev. E 64, 056132 (2001)

    Article  Google Scholar 

  41. Fouladvand, M.E., Nematollahi, M.: Optimization of green-times at an isolated urban crossroads. Eur. Phys. J. B 22, 395–401 (2001)

    Article  Google Scholar 

  42. Huang, D.-W., Huang, W.-N.: Traffic signal synchronization. Phys. Rev. E 67, 056124 (2003)

    Article  Google Scholar 

  43. Newell, G.F.: The flow of highway traffic through a sequence of synchronized traffic signals. Operat. Res. 8, 390–405 (1960)

    Article  MathSciNet  Google Scholar 

  44. Newell, G.F.: Synchronization of traffic lights for high flow. Quart. Appl. Math. 21, 315–324 (1964)

    MathSciNet  Google Scholar 

  45. Baverez, E., Newell, G.F.: Traffic Signal Synchronization on a One-Way Street. Transp. Sci. 1, 55–73 (1967)

    Article  Google Scholar 

  46. Hillier, J.A., Rothery, R.: The Synchronization of Traffic Signals for Minimum Delays. Transp. Sci. 1, 81–94 (1967)

    Article  Google Scholar 

  47. Newell, G.F.: Traffic Signal Synchronization for High Flows on a Two-Way Street. In: Leutzbach, W., Baron, P. (eds.) Beiträge zur Theorie des Verkehrsflusses: Referate anläßlich des IV. Internationalen Symposiums über die Theorie des Verkehrsflusses in Karlsruhe im Juni, Proc. Fourth Intern. Symp. on the Theory of Traffic Flow, University of Karlsruhe, pp. 87–92. Bundesministerium für Verkehr, Bonn (1968)

    Google Scholar 

  48. Chang, A.: Synchronization of Traffic Signals in Grid Networks. IBM Journal 11, 436–441 (1967)

    Google Scholar 

  49. Gartner, N.: Constraining Relations Among Offsets In Synchronized Signal Networks. Transp. Sci. 6, 88–93 (1972)

    Article  Google Scholar 

  50. Gartner, N., Little, J.D.C., Gabbay, H.: Optimization of Traffic Signal Settings by Mixed-Integer Linear Programming. Part I: The Network Coordination Problem. Transp. Sci. 9, 321–343 (1975)

    Article  MathSciNet  Google Scholar 

  51. Gartner, N., Little, J.D.C., Gabbay, H.: Optimization of Traffic Signal Settings by Mixed-Integer Linear Programming. Part II: The Network Synchronization Problem. Transp. Sci. 9, 321–343 (1975)

    Article  MathSciNet  Google Scholar 

  52. Faieta, B., Huberman, B.A.: Firefly: A Synchronization Strategy for Urban Traffic Control. Techn. Rep., Xerox Palo Alto Research Center (1993)

    Google Scholar 

  53. Carlson, A.D., Copeland, J.: Flash Communication in Fireflies. Quart. Rev. Biol. 60, 415–433 (1985)

    Article  Google Scholar 

  54. Buck, J.: Synchronous Rhythmic Flashing of Fireflies. II. Quart. Rev. Biol. 63, 265–286 (1988)

    Article  Google Scholar 

  55. Mirollo, R.E., Strogatz, S.H.: Synchronization of Pulse-Coupled Biological Oscillators. SIAM J. Appl. Math. 50, 1645–1662 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  56. Ermentrout, B.: An adaptive model for synchrony in the firefly Pteroptyx malaccae. J. Math. Biol. 29, 571–585 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  57. Chowdhury, D., Schadschneider, A.: Self-organization of traffic jams in cities: Effects of stochastic dynamics and signal periods. Phys. Rev. E 59, R1311–R1314 (1999)

    Article  Google Scholar 

  58. Huang, D.-W., Huang, W.-N.: Optimization of traffic lights at crossroads. Int. J. Mod. Phys. C 14, 539–548 (2003)

    Article  Google Scholar 

  59. Kuramoto, Y.: Self-entrainment of a population of coupled non-linear oscillators. In: Araki, H. (ed.) International Symposium on Mathematical Problems in Theoretical Physics. Lecture Notes in Physics, vol. 39, pp. 420–422. Springer, New York (1975)

    Chapter  Google Scholar 

  60. Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence. Springer, New York (1984)

    MATH  Google Scholar 

  61. Strogatz, S.H.: From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D 143, 1–20 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  62. Acebrón, J.A., Bonilla, L.L., Pérez Vicente, C.J., et al.: The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137–185 (2005)

    Article  Google Scholar 

  63. Sekiyama, K., Nakanishi, J., Takagawa, I., et al.: Self-Organizing Control of Urban Traffic Signal Networks. In: Proc. IEEE Int. Conf. on Systems, Man, and Cybernetics, vol. 4, pp. 2481–2486 (2001)

    Google Scholar 

  64. Donner, R., Lämmer, S., Hofleitner, A., Helbing, D.: Decentralised control of traffic flows in urban networks; Schneider, J.J. (ed.), Lectures on Socio- and Econophysics. Springer, Berlin (in preparation) (accepted for publication)

    Google Scholar 

  65. Nishikawa, I., Nakazawa, S., Kita, H.: Area-wide Control of Traffic Signals by a Phase Model. Trans. Soc. Instr. Contr. Engin. 39, 199–208 (2003) (in Japanese)

    Google Scholar 

  66. Nishikawa, I., Kita, H.: Information Flow Control by Autonomous Adaptive Nodes and Its Application to an On-line Traffic Control. In: Proc. 7th Joint Conf. on Information Sciences, pp. 1369–1374. Association for Intelligent Machinery, Durham (2003)

    Google Scholar 

  67. Nishikawa, I.: Dynamics of Oscillator Network and Its Application to Offset Control of Traffic Signals. In: Proc. Int. Joint Cof. Neural Networks, pp. 1273–1277 (2004)

    Google Scholar 

  68. Nishikawa, I., Kuroe, Y.: Dynamics of complex-valued neural networks and its relation to a phase oscillator system. In: Pal, N.R., Kasabov, N., Mudi, R.K., Pal, S., Parui, S.K. (eds.) ICONIP 2004. LNCS, vol. 3316, pp. 122–129. Springer, Heidelberg (2004)

    Google Scholar 

  69. Nishikawa, I., Iritani, T., Sakakibara, K., Kuroe, Y.: Phase dynamics of complex-valued neural networks and its application to traffic signal control. Int. J. Neur. Syst. 15, 111–120 (2005)

    Article  Google Scholar 

  70. Nishikawa, I., Iritani, T., Sakakibara, K., Kuroe, Y.: 2 Types of Complex-Valued Hopfield Networks and the Application to a Traffic Signal Control. In: Proc. Int. Joint Conf. Neural Networks, pp. 782–787 (2005)

    Google Scholar 

  71. Nishikawa, I., Iritani, T., Sakakibara, K., Kuroe, Y.: Phase Synchronization in Phase Oscillators and a Complex-Valued Neural Network and Its Application to Traffic Flow Control. Prog. Theor. Phys. Suppl. 161, 302–305 (2006)

    Article  Google Scholar 

  72. Nishikawa, I., Iritani, T., Sakakibara, K.: Improvements of the Traffic Signal Control by Complex-Valued Hopfield Networks. In: Proc. Int. Joint Conf. Neural Networks, pp. 459–464 (2006)

    Google Scholar 

  73. Helbing, D., Siegmeier, J., Lämmer, S.: Self-organized network flows. Netw. Heterog. Med. 2, 193–210 (2007)

    MATH  Google Scholar 

  74. Helbing, D., Johansson, A., Mathiesen, J., Jensen, M.H., Hansen, A.: Analytical approach to continuous and intermittent bottleneck flows. Phys. Rev. Lett. 97, 168001 (2006)

    Article  Google Scholar 

  75. Helbing, D., Buzna, L., Johansson, A., Werner, T.: Self-Organized Pedestrian Crowd Dynamics: Experiments, Simulations, and Design Solutions. Transp. Sci. 39, 1–24 (2005)

    Article  Google Scholar 

  76. Dussutour, A., Deneubourg, J.-L., Fourcassié, V.: Temporal organization of bi-directional traffic in the ant Lasius niger (L). J. Exp. Biol. 208, 2903–2912 (2005)

    Article  Google Scholar 

  77. Burstedde, C., Klauck, K., Schadschneider, A., Zittartz, J.: Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Physica A 295, 507–525 (2001)

    Article  MATH  Google Scholar 

  78. Helbing, D., Jiang, R., Treiber, M.: Analytical investigation of oscillations in intersecting flows of pedestrian and vehicle traffic. Phys. Rev. E 72, 046130 (2005)

    Article  Google Scholar 

  79. Jiang, R., Wang, Q.-S.: Interaction between vehicle and pedestrians in a narrow channel. Physica A 368, 239–246 (2006)

    Article  Google Scholar 

  80. Jiang, R., Helbing, D., Kumar Shukla, P., Wang, Q.-S.: Inefficient emergent oscillations in intersecting driven many-particle flows. Physica A 368, 567–574 (2006)

    Article  Google Scholar 

  81. Donner, R., Hofleitner, A., Höfener, J., Lämmer, S., Helbing, D.: Dynamic stabilization and control of material flows in networks and its relationship to phase synchronization. In: Proc. 3rd Int. Conf. Physics and Control, PhysCon 2007, p. 1188 (2007)

    Google Scholar 

  82. Donner, R.: Multivariate analysis of spatially heterogeneous phase synchronisation in complex systems: Application to self-organised control of material flows in networks. Eur. Phys. J. B 63, 349–361 (2008)

    Google Scholar 

  83. Rayleigh, L.: On the resultant of a large number of vibrations of the same pitch and of arbitrary phase. Phil. Mag. Ser. 5(10), 73–78 (1880)

    Google Scholar 

  84. Tass, P., Rosenblum, M.G., Weule, J., et al.: Detection of n:m Phase Locking from Noisy Data: Application to Magnetoencephalography. Phys. Rev. Lett. 81, 3291–3294 (1998)

    Article  Google Scholar 

  85. Schürmann, T., Grassberger, P.: Entropy estimation of symbol sequences. Chaos 142, 414–427 (1996)

    Article  Google Scholar 

  86. Finn, J.M., Goettee, J.D., Toroczkai, Z., et al.: Estimation of entropies and dimensions by nonlinear symbolic time series analysis. Chaos 13, 444–456 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  87. Paluš, M.: Detecting phase synchronization in noisy systems. Phys. Lett. A 235, 341–351 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  88. Eckmann, J.-P., Oliffson Kamphorst, S., Ruelle, D.: Recurrence plots of dynamic systems. Europhys. Lett. 4, 973–977 (1987)

    Article  Google Scholar 

  89. Marwan, N., Romano, M.C., Thiel, M., Kurths, J.: Recurrence plots for the analysis of complex systems. Phys. Rep. 438, 237–329 (2007)

    Article  MathSciNet  Google Scholar 

  90. Romano, M.C., Thiel, M., Kurths, J., et al.: Detection of synchronization for non-phase-coherent and non-stationary data. Europhys. Lett. 71, 466–472 (2005)

    Article  Google Scholar 

  91. Romano, M.C., Thiel, M., Kurths, J., et al.: Synchronization Analysis and Recurrence in Complex Systems. In: Schelter, B., Winterhalder, M., Timmer, J. (eds.) Handbook of Time Series Analysis, pp. 231–264. Wiley-VCH, Weinheim (2006)

    Chapter  Google Scholar 

  92. Donner, R.: Phase Coherence Analysis of Decadal-Scale Sunspot Activity of Both Solar Hemispheres. In: Donner, R.V., Barbosa, S.M. (eds.) Nonlinear Time Series Analysis in the Geosciences. Springer Lecture Notes in Earth Sciences, vol. 112, pp. 355–385. Springer, Berlin (2008)

    Chapter  Google Scholar 

  93. Kralemann, B., Cimponeriu, L., Rosenblum, M., et al.: Uncovering interaction of coupled oscillators from data. Phys. Rev. E 76, 055201 (2007)

    Article  Google Scholar 

  94. Kralemann, B., Cimponeriu, L., Rosenblum, M., et al.: Phase dynamics of coupled oscillators reconstructed from data. Phys. Rev. E 77, 066205 (2008)

    Article  MathSciNet  Google Scholar 

  95. Allefeld, C., Kurths, J.: An approach to multivariate phase synchronization analysis and its application to event-related potentials. Int. J. Bifurcation Chaos 14, 417–426 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  96. Allefeld, C., Müller, M., Kurths, J.: Eigenvalue decomposition as a generalized synchronization cluster analysis. Int. J. Bifurcation Chaos 17, 3493–3497 (2007)

    Article  MATH  Google Scholar 

  97. Quian Quiroga, R., Kreuz, T., Grassberger, P.: Event synchronization: A simple and fast method to measure synchronicity and time delay patterns. Phys. Rev. E 66, 041904 (2002)

    Article  MathSciNet  Google Scholar 

  98. Hülsmann, M., Windt, K.: Understanding Autonomous Cooperation and Control in Logistics. Springer, Berlin (2008)

    Google Scholar 

  99. Lämmer, S., Donner, R., Helbing, D.: Anticipative control of switched queueing systems. Eur. Phys. J. B 63, 341–347 (2008)

    Article  MathSciNet  Google Scholar 

  100. Lämmer, S., Helbing, D.: Self-Control of Traffic Lights and Vehicle Flows in Urban Road Networks. J. Stat. Mech. Theor. Exp., P04019 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Donner, R. (2009). Emergence of Synchronization in Transportation Networks with Biologically Inspired Decentralized Control. In: Kyamakya, K., Halang, W.A., Unger, H., Chedjou, J.C., Rulkov, N.F., Li, Z. (eds) Recent Advances in Nonlinear Dynamics and Synchronization. Studies in Computational Intelligence, vol 254. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04227-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04227-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04226-3

  • Online ISBN: 978-3-642-04227-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics