Skip to main content

Bee Colony Optimization (BCO)

  • Chapter
Innovations in Swarm Intelligence

Part of the book series: Studies in Computational Intelligence ((SCI,volume 248))

Abstract

Swarm Intelligence is the part of Artificial Intelligence based on study of actions of individuals in various decentralized systems. The Bee Colony Optimization (BCO) metaheuristic has been introduced fairly recently as a new direction in the field of Swarm Intelligence. Artificial bees represent agents, which collaboratively solve complex combinatorial optimization problem. The chapter presents a classification and analysis of the results achieved using Bee Colony Optimization (BCO) to model complex engineering and management processes. The primary goal of this chapter is to acquaint readers with the basic principles of Bee Colony Optimization, as well as to indicate potential BCO applications in engineering and management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beni, G.: The concept of cellular robotic system. In: Proceedings of the 1988 IEEE International Symposium on Intelligent Control, pp. 57–62. IEEE Computer Society Press, Los Alamitos (1988)

    Google Scholar 

  2. Beni, G., Wang, J.: Swarm intelligence. In: Proceedings of the Seventh Annual Meeting of the Robotics Society of Japan, pp. 425–428. RSJ Press, Tokyo (1989)

    Google Scholar 

  3. Beni, G., Hackwood, S.: Stationary waves in cyclic swarms. In: Proceedings of the 1992 International Symposium on Intelligent Control, pp. 234–242. IEEE Computer Society Press, Los Alamitos (1992)

    Chapter  Google Scholar 

  4. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence. Oxford University Press, Oxford (1997)

    Google Scholar 

  5. Lučić, P., Teodorović, D.: Bee system: modeling combinatorial optimization transportation engineering problems by swarm intelligence. In: Preprints of the TRISTAN IV Triennial Symposium on Transportation Analysis, Sao Miguel, Azores Islands, Portugal, pp. 441–445 (2001)

    Google Scholar 

  6. Lučić, P., Teodorović, D.: Transportation modeling: an artificial life approach. In: Proceedings of the 14th IEEE International Conference on Tools with Artificial Intelligence, Washington, DC, pp. 216–223 (2002)

    Google Scholar 

  7. Lučić, P., Teodorović, D.: Computing with bees: attacking complex transportation engineering problems. Int. J. Artif. Intell. T. 12, 375–394 (2003a)

    Article  Google Scholar 

  8. Lučić, P., Teodorović, D.: Vehicle routing problem with uncertain demand at nodes: the bee system and fuzzy logic approach. In: Verdegay, J.L. (ed.) Fuzzy Sets in Optimization, pp. 67–82. Springer, Heidelberg (2003b)

    Google Scholar 

  9. Teodorović, D.: Transport Modeling by Multi-Agent Systems: A Swarm Intelligence Approach. Transport. Plan. Techn. 26, 289–312 (2003b)

    Article  Google Scholar 

  10. Teodorović, D., Dell’Orco, M.: Bee colony optimization – a cooperative learning approach to complex transportation problems. In: Advanced OR and AI Methods in Transportation. Proceedings of the 10th Meeting of the EURO Working Group on Transportation, Poznan, Poland, pp. 51–60 (2005)

    Google Scholar 

  11. Teodorović, D., Lučić, P., Marković, G., Dell’ Orco, M.: Bee colony optimization: principles and applications. In: Reljin, B., Stanković, S. (eds.) Proceedings of the Eight Seminar on Neural Network Applications in Electrical Engineering – NEUREL 2006, University of Belgrade, Belgrade, pp. 151–156 (2006)

    Google Scholar 

  12. Marković, G., Teodorović, D., Aćimovic´ Raspopović, V.: Routing and wavelength assignment in all-optical networks based on the bee colony optimization. AI Commun. 20, 273–285 (2007)

    MathSciNet  Google Scholar 

  13. Teodorović, D., Šelmić, M.: The BCO Algorithm For The p Median Problem. In: Proceedings of the XXXIV Serbian Operations Research Conferece. Zlatibor, Serbia (2007) (in Serbian)

    Google Scholar 

  14. Teodorović, D., Dell’Orco, M.: Mitigating traffic congestion: solving the ride-matching problem by bee colony optimization. Transport. Plan. Techn. 31, 135–152 (2008)

    Article  Google Scholar 

  15. Teodorović, D.: Swarm Intelligence Systems for Transportation Engineering: Principles and Applications. Transp. Res. Pt. C-Emerg. Technol. 16, 651–782 (2008)

    Article  Google Scholar 

  16. Todorović, N. Petrović, S., Teodorović, D.: Bee Colony Optimization for Nurse Rostering (submitted)

    Google Scholar 

  17. Davidović, T., Šelmić, M., Teodorović, D.: Scheduling Independent Tasks: Bee Colony Optimization Approach (submitted)

    Google Scholar 

  18. Camazine, S., Sneyd, J.: A Model of Collective Nectar Source by Honey Bees: Self-organization Through Simple Rules. J. Theor. Biol. 149, 547–571 (1991)

    Article  Google Scholar 

  19. Yonezawa, Y., Kikuchi, T.: Ecological algorithm for optimal ordering used by collective Honey bee behavior. In: Proceedings of the Seventh International Symposium on Micro Machine and Humane Science, Nagoya, Japan, pp. 249–255 (1996)

    Google Scholar 

  20. Sato, T., Hagiwara, M.: Bee System: Finding Solution by a Concentrated Search. In: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics Computational Cybernetics and Simulation, Orlando, FL, USA, pp. 3954–3959 (1997)

    Google Scholar 

  21. Abbass, H.A.: MBO: marriage in honey bees optimization-a Haplometrosis polygynous swarming approach. In: Proceedings of the Congress on Evolutionary Computation, Seoul, South Korea, pp. 207–214 (2001)

    Google Scholar 

  22. Wedde, H.F., Farooq, M., Zhang, Y.: BeeHive: An efficient fault-tolerant routing algorithm inspired by honey bee behavior. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 83–94. Springer, Heidelberg (2004)

    Google Scholar 

  23. Karaboga, D.: An idea based on honey bee swarm for numerical optimization (Technical Report-Tr06, October, 2005), Erciyes University, Engineering Faculty Computer Engineering Department Kayseri/Türkiye (2005)

    Google Scholar 

  24. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Global. Optim. 39, 459–471 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Karaboga, D., Akay, B., Ozturk, C.: Artificial Bee Colony (ABC) Optimization Algorithm for Training Feed-Forward Neural Networks. In: Torra, V., Narukawa, Y., Yoshida, Y. (eds.) MDAI 2007. LNCS (LNAI), vol. 4617, pp. 318–329. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  26. Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC) algorithm. Appl. Soft. Comput. 8, 687–697 (2008)

    Article  Google Scholar 

  27. Drias, H., Sadeg, S., Yahi, S.: Cooperative Bees Swarm for Solving the Maximum Weighted Satisfiability Problem. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 318–325. Springer, Heidelberg (2005)

    Google Scholar 

  28. Yang, X.-S.: Engineering Optimizations via Nature-Inspired Virtual Bee Algorithms. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2005. LNCS, vol. 3562, pp. 317–323. Springer, Heidelberg (2005)

    Google Scholar 

  29. Benatchba, K., Admane, L., Koudil, M.: Using Bees to Solve a Data-Mining Problem Expressed as a Max-Sat One. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2005. LNCS, vol. 3562, pp. 212–220. Springer, Heidelberg (2005)

    Google Scholar 

  30. Chong, C.S., Low, M.Y.H., Sivakumar, A.I., Gay, K.L.: A Bee Colony Optimization Algorithm to Job Shop Scheduling Simulation. In: Perrone, L.F., Wieland, F.P., Liu, J., Lawson, B.G., Nicol, D.M., Fujimoto, R.M. (eds.) Proceedings of the Winter Conference, Washington, DC, pp. 1954–1961 (2006)

    Google Scholar 

  31. Pham, D.T., Ghanbarzadeh, A., Koc, E., Otri, S., Zaidi, M.: The Bees Algorithm - A Novel Tool for Complex Optimisation Problems. In: Proceedings of the 2nd Virtual International Conference on Intelligent Production Machines and Systems (IPROMS 2006), pp. 454–459. Elsevier, Cardiff (2006)

    Google Scholar 

  32. Pham, D.T., Soroka, A.J., Ghanbarzadeh, A., Koc, E.: Optimising Neural Networks for Identification of Wood Defects Using the Bees Algorithm. In: Proceedings of the IEEE International Conference on Industrial Informatics, Singapore, pp. 1346–1351 (2006)

    Google Scholar 

  33. Navrat, P.: Bee Hive Metaphor for Web Search. In: Rachev, B., Smrikarov, A. (eds.) Proceedings of the International Conference on Computer Systems and Technologies - CompSysTech 2006, Veliko Turnovo, Bulgaria, vol. 7, pp. IIIA.12- 1-7 (2006)

    Google Scholar 

  34. Wedde, H.F., Timm, C., Farooq, M.: BeeHiveAIS: A Simple, Efficient, Scalable and Secure Routing Framework Inspired by Artificial Immune Systems. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 623–632. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  35. Yang, C., Chen, J., Tu, X.: Algorithm of Fast Marriage in Honey Bees Optimization and Convergence Analysis. In: Proceedings of the IEEE International Conference on Automation and Logistics, Jinan, China, pp. 1794–1799 (2007)

    Google Scholar 

  36. Koudil, M., Benatchba, K., Tarabetand, A.: El Batoul Sahraoui: Using artificial bees to solve partitioning and scheduling problems in codesign. Appl. Math. Comput. 186, 1710–1722 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  37. Quijano, N., Passino, K.M.: Honey Bee Social Foraging Algorithms for Resource Allocation, Part I: Algorithm and Theory. In: Proceedings of the 2007 American Control Conference, New York, pp. 3383–3388 (2007a)

    Google Scholar 

  38. Quijano, N., Passino, K.M.: Honey Bee Social Foraging Algorithms for Resource Allocation, Part II: Application. In: Proceedings of the 2007 American Control Conference, New York, pp. 3389–3394 (2007b)

    Google Scholar 

  39. Wedde, H.F., Lehnhoff, S., van Bonn, B., Bay, Z., Becker, S., Böttcher, S., Brunner, C., Büscher, A., Fürst, T., Lazarescu, M., Rotaru, E., Senge, S., Steinbach, B., Yilmaz, F., Zimmermann, T.: A Novel Class of Multi-Agent Algorithms for Highly Dynamic Transport Planning Inspired by Honey Bee Behavior. In: Proceedings of the 12th IEEE International Conference on Factory Automation, Patras, Greece, pp. 1157–1164 (2007)

    Google Scholar 

  40. Afshar, A., Bozorg Haddada, O., Marin, M.A., Adams, B.J.: Honey-bee mating optimization (HBMO) algorithm for optimal reservoir operation. J. Frank. Instit. 344, 452–462 (2007)

    Article  Google Scholar 

  41. Baykasoglu, A., Özbakýr, L., Tapkan, P.: Artificial Bee Colony Algorithm and Its Application to Generalized Assignment Problem. In: Chan, F.T.S., Tiwari, M.K. (eds.) Swarm Intelligence: Focus on Ant and Particle Swarm Optimization, pp. 113–143. Itech Education and Publishing, Vienna (2007)

    Google Scholar 

  42. Fathian, M., Amiri, B., Maroosi, B.: A honeybee-mating approach for cluster analysis. Int. J. Adv. Manuf. Technol. 38, 809–821 (2008)

    Article  Google Scholar 

  43. Pham, D.T., Haj Darwish, A., Eldukhr, E.E.: Optimisation of a fuzzy logic controller using the Bees Algorithm. Int. J., Comp. Aid. Eng. Tech. 1, 250–264 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Teodorović, D. (2009). Bee Colony Optimization (BCO). In: Lim, C.P., Jain, L.C., Dehuri, S. (eds) Innovations in Swarm Intelligence. Studies in Computational Intelligence, vol 248. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04225-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04225-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04224-9

  • Online ISBN: 978-3-642-04225-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics