Abstract
Swarm Intelligence is the part of Artificial Intelligence based on study of actions of individuals in various decentralized systems. The Bee Colony Optimization (BCO) metaheuristic has been introduced fairly recently as a new direction in the field of Swarm Intelligence. Artificial bees represent agents, which collaboratively solve complex combinatorial optimization problem. The chapter presents a classification and analysis of the results achieved using Bee Colony Optimization (BCO) to model complex engineering and management processes. The primary goal of this chapter is to acquaint readers with the basic principles of Bee Colony Optimization, as well as to indicate potential BCO applications in engineering and management.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Beni, G.: The concept of cellular robotic system. In: Proceedings of the 1988 IEEE International Symposium on Intelligent Control, pp. 57–62. IEEE Computer Society Press, Los Alamitos (1988)
Beni, G., Wang, J.: Swarm intelligence. In: Proceedings of the Seventh Annual Meeting of the Robotics Society of Japan, pp. 425–428. RSJ Press, Tokyo (1989)
Beni, G., Hackwood, S.: Stationary waves in cyclic swarms. In: Proceedings of the 1992 International Symposium on Intelligent Control, pp. 234–242. IEEE Computer Society Press, Los Alamitos (1992)
Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence. Oxford University Press, Oxford (1997)
Lučić, P., Teodorović, D.: Bee system: modeling combinatorial optimization transportation engineering problems by swarm intelligence. In: Preprints of the TRISTAN IV Triennial Symposium on Transportation Analysis, Sao Miguel, Azores Islands, Portugal, pp. 441–445 (2001)
Lučić, P., Teodorović, D.: Transportation modeling: an artificial life approach. In: Proceedings of the 14th IEEE International Conference on Tools with Artificial Intelligence, Washington, DC, pp. 216–223 (2002)
Lučić, P., Teodorović, D.: Computing with bees: attacking complex transportation engineering problems. Int. J. Artif. Intell. T. 12, 375–394 (2003a)
Lučić, P., Teodorović, D.: Vehicle routing problem with uncertain demand at nodes: the bee system and fuzzy logic approach. In: Verdegay, J.L. (ed.) Fuzzy Sets in Optimization, pp. 67–82. Springer, Heidelberg (2003b)
Teodorović, D.: Transport Modeling by Multi-Agent Systems: A Swarm Intelligence Approach. Transport. Plan. Techn. 26, 289–312 (2003b)
Teodorović, D., Dell’Orco, M.: Bee colony optimization – a cooperative learning approach to complex transportation problems. In: Advanced OR and AI Methods in Transportation. Proceedings of the 10th Meeting of the EURO Working Group on Transportation, Poznan, Poland, pp. 51–60 (2005)
Teodorović, D., Lučić, P., Marković, G., Dell’ Orco, M.: Bee colony optimization: principles and applications. In: Reljin, B., Stanković, S. (eds.) Proceedings of the Eight Seminar on Neural Network Applications in Electrical Engineering – NEUREL 2006, University of Belgrade, Belgrade, pp. 151–156 (2006)
Marković, G., Teodorović, D., Aćimovic´ Raspopović, V.: Routing and wavelength assignment in all-optical networks based on the bee colony optimization. AI Commun. 20, 273–285 (2007)
Teodorović, D., Šelmić, M.: The BCO Algorithm For The p Median Problem. In: Proceedings of the XXXIV Serbian Operations Research Conferece. Zlatibor, Serbia (2007) (in Serbian)
Teodorović, D., Dell’Orco, M.: Mitigating traffic congestion: solving the ride-matching problem by bee colony optimization. Transport. Plan. Techn. 31, 135–152 (2008)
Teodorović, D.: Swarm Intelligence Systems for Transportation Engineering: Principles and Applications. Transp. Res. Pt. C-Emerg. Technol. 16, 651–782 (2008)
Todorović, N. Petrović, S., Teodorović, D.: Bee Colony Optimization for Nurse Rostering (submitted)
Davidović, T., Šelmić, M., Teodorović, D.: Scheduling Independent Tasks: Bee Colony Optimization Approach (submitted)
Camazine, S., Sneyd, J.: A Model of Collective Nectar Source by Honey Bees: Self-organization Through Simple Rules. J. Theor. Biol. 149, 547–571 (1991)
Yonezawa, Y., Kikuchi, T.: Ecological algorithm for optimal ordering used by collective Honey bee behavior. In: Proceedings of the Seventh International Symposium on Micro Machine and Humane Science, Nagoya, Japan, pp. 249–255 (1996)
Sato, T., Hagiwara, M.: Bee System: Finding Solution by a Concentrated Search. In: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics Computational Cybernetics and Simulation, Orlando, FL, USA, pp. 3954–3959 (1997)
Abbass, H.A.: MBO: marriage in honey bees optimization-a Haplometrosis polygynous swarming approach. In: Proceedings of the Congress on Evolutionary Computation, Seoul, South Korea, pp. 207–214 (2001)
Wedde, H.F., Farooq, M., Zhang, Y.: BeeHive: An efficient fault-tolerant routing algorithm inspired by honey bee behavior. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 83–94. Springer, Heidelberg (2004)
Karaboga, D.: An idea based on honey bee swarm for numerical optimization (Technical Report-Tr06, October, 2005), Erciyes University, Engineering Faculty Computer Engineering Department Kayseri/Türkiye (2005)
Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Global. Optim. 39, 459–471 (2007)
Karaboga, D., Akay, B., Ozturk, C.: Artificial Bee Colony (ABC) Optimization Algorithm for Training Feed-Forward Neural Networks. In: Torra, V., Narukawa, Y., Yoshida, Y. (eds.) MDAI 2007. LNCS (LNAI), vol. 4617, pp. 318–329. Springer, Heidelberg (2007)
Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC) algorithm. Appl. Soft. Comput. 8, 687–697 (2008)
Drias, H., Sadeg, S., Yahi, S.: Cooperative Bees Swarm for Solving the Maximum Weighted Satisfiability Problem. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 318–325. Springer, Heidelberg (2005)
Yang, X.-S.: Engineering Optimizations via Nature-Inspired Virtual Bee Algorithms. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2005. LNCS, vol. 3562, pp. 317–323. Springer, Heidelberg (2005)
Benatchba, K., Admane, L., Koudil, M.: Using Bees to Solve a Data-Mining Problem Expressed as a Max-Sat One. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2005. LNCS, vol. 3562, pp. 212–220. Springer, Heidelberg (2005)
Chong, C.S., Low, M.Y.H., Sivakumar, A.I., Gay, K.L.: A Bee Colony Optimization Algorithm to Job Shop Scheduling Simulation. In: Perrone, L.F., Wieland, F.P., Liu, J., Lawson, B.G., Nicol, D.M., Fujimoto, R.M. (eds.) Proceedings of the Winter Conference, Washington, DC, pp. 1954–1961 (2006)
Pham, D.T., Ghanbarzadeh, A., Koc, E., Otri, S., Zaidi, M.: The Bees Algorithm - A Novel Tool for Complex Optimisation Problems. In: Proceedings of the 2nd Virtual International Conference on Intelligent Production Machines and Systems (IPROMS 2006), pp. 454–459. Elsevier, Cardiff (2006)
Pham, D.T., Soroka, A.J., Ghanbarzadeh, A., Koc, E.: Optimising Neural Networks for Identification of Wood Defects Using the Bees Algorithm. In: Proceedings of the IEEE International Conference on Industrial Informatics, Singapore, pp. 1346–1351 (2006)
Navrat, P.: Bee Hive Metaphor for Web Search. In: Rachev, B., Smrikarov, A. (eds.) Proceedings of the International Conference on Computer Systems and Technologies - CompSysTech 2006, Veliko Turnovo, Bulgaria, vol. 7, pp. IIIA.12- 1-7 (2006)
Wedde, H.F., Timm, C., Farooq, M.: BeeHiveAIS: A Simple, Efficient, Scalable and Secure Routing Framework Inspired by Artificial Immune Systems. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 623–632. Springer, Heidelberg (2006)
Yang, C., Chen, J., Tu, X.: Algorithm of Fast Marriage in Honey Bees Optimization and Convergence Analysis. In: Proceedings of the IEEE International Conference on Automation and Logistics, Jinan, China, pp. 1794–1799 (2007)
Koudil, M., Benatchba, K., Tarabetand, A.: El Batoul Sahraoui: Using artificial bees to solve partitioning and scheduling problems in codesign. Appl. Math. Comput. 186, 1710–1722 (2007)
Quijano, N., Passino, K.M.: Honey Bee Social Foraging Algorithms for Resource Allocation, Part I: Algorithm and Theory. In: Proceedings of the 2007 American Control Conference, New York, pp. 3383–3388 (2007a)
Quijano, N., Passino, K.M.: Honey Bee Social Foraging Algorithms for Resource Allocation, Part II: Application. In: Proceedings of the 2007 American Control Conference, New York, pp. 3389–3394 (2007b)
Wedde, H.F., Lehnhoff, S., van Bonn, B., Bay, Z., Becker, S., Böttcher, S., Brunner, C., Büscher, A., Fürst, T., Lazarescu, M., Rotaru, E., Senge, S., Steinbach, B., Yilmaz, F., Zimmermann, T.: A Novel Class of Multi-Agent Algorithms for Highly Dynamic Transport Planning Inspired by Honey Bee Behavior. In: Proceedings of the 12th IEEE International Conference on Factory Automation, Patras, Greece, pp. 1157–1164 (2007)
Afshar, A., Bozorg Haddada, O., Marin, M.A., Adams, B.J.: Honey-bee mating optimization (HBMO) algorithm for optimal reservoir operation. J. Frank. Instit. 344, 452–462 (2007)
Baykasoglu, A., Özbakýr, L., Tapkan, P.: Artificial Bee Colony Algorithm and Its Application to Generalized Assignment Problem. In: Chan, F.T.S., Tiwari, M.K. (eds.) Swarm Intelligence: Focus on Ant and Particle Swarm Optimization, pp. 113–143. Itech Education and Publishing, Vienna (2007)
Fathian, M., Amiri, B., Maroosi, B.: A honeybee-mating approach for cluster analysis. Int. J. Adv. Manuf. Technol. 38, 809–821 (2008)
Pham, D.T., Haj Darwish, A., Eldukhr, E.E.: Optimisation of a fuzzy logic controller using the Bees Algorithm. Int. J., Comp. Aid. Eng. Tech. 1, 250–264 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Teodorović, D. (2009). Bee Colony Optimization (BCO). In: Lim, C.P., Jain, L.C., Dehuri, S. (eds) Innovations in Swarm Intelligence. Studies in Computational Intelligence, vol 248. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04225-6_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-04225-6_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04224-9
Online ISBN: 978-3-642-04225-6
eBook Packages: EngineeringEngineering (R0)