Abstract
Motivated by applications in software verification, we explore automated reasoning about the non-disjoint combination of theories of infinitely many finite structures, where the theories share set variables and set operations. We prove a combination theorem and apply it to show the decidability of the satisfiability problem for a class of formulas obtained by applying propositional connectives to formulas belonging to: 1) Boolean Algebra with Presburger Arithmetic (with quantifiers over sets and integers), 2) weak monadic second-order logic over trees (with monadic second-order quantifiers), 3) two-variable logic with counting quantifiers (ranging over elements), 4) the Bernays-Schönfinkel-Ramsey class of first-order logic with equality (with ∃ * ∀ * quantifier prefix), and 5) the quantifier-free logic of multisets with cardinality constraints.
Keywords
- Decision Procedure
- Cardinality Constraint
- Tree Automaton
- Star Type
- Linear Arithmetic
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Andrews, P.B.: An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof, 2nd edn. Springer (Kluwer), Heidelberg (2002)
Ball, T., Podelski, A., Rajamani, S.K.: Relative completeness of abstraction refinement for software model checking. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, p. 158. Springer, Heidelberg (2002)
Barnett, M., DeLine, R., Fähndrich, M., Leino, K.R.M., Schulte, W.: Verification of object-oriented programs with invariants. Journal of Object Technology 3(6), 27–56 (2004)
Barrett, C., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 298–302. Springer, Heidelberg (2007)
Basin, D., Friedrich, S.: Combining WS1S and HOL. In: FroCoS (1998)
Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Springer, Heidelberg (1997)
Boyer, R.S., Moore, J.S.: Integrating decision procedures into heuristic theorem provers: A case study of linear arithmetic. In: Machine Intelligence, vol. 11. Oxford University Press, Oxford (1988)
de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)
Feferman, S., Vaught, R.L.: The first order properties of products of algebraic systems. Fundamenta Mathematicae 47, 57–103 (1959)
Fontaine, P.: Combinations of theories and the bernays-schönfinkel-ramsey class. In: VERIFY (2007)
Fontaine, P.: Combinations of theories for decidable fragments of first-order logic. In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS (LNAI), vol. 5749, pp. 263–278. Springer, Heidelberg (2009)
Gabbay, D.M., Ohlbach, H.J.: Quantifier elimination in second-order predicate logic. In: Nebel, B., Rich, C., Swartout, W. (eds.) Principles of Knowledge Representation and Reasoning. Morgan-Kaufmann, San Francisco (1992)
Ge, Y., Barrett, C., Tinelli, C.: Solving quantified verification conditions using satisfiability modulo theories. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 167–182. Springer, Heidelberg (2007)
Ghilardi, S.: Model theoretic methods in combined constraint satisfiability. Journal of Automated Reasoning 33(3-4), 221–249 (2005)
Ginsburg, S., Spanier, E.: Semigroups, Pressburger formulas and languages. Pacific Journal of Mathematics 16(2), 285–296 (1966)
Klaedtke, F., Rueß, H.: Parikh automata and monadic second-order logics with linear cardinality constraints. Technical Report 177, Institute of Computer Science at Freiburg University (2002)
Klaedtke, F., Rueß, H.: Monadic second-order logics with cardinalities. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719. Springer, Heidelberg (2003)
Klarlund, N., Møller, A.: MONA Version 1.4 User Manual. BRICS Notes Series NS-01-1, Department of Computer Science. University of Aarhus (January 2001)
Krstic, S., Goel, A., Grundy, J., Tinelli, C.: Combined satisfiability modulo parametric theories. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 602–617. Springer, Heidelberg (2007)
Kuncak, V., Nguyen, H.H., Rinard, M.: Deciding Boolean Algebra with Presburger Arithmetic. J. of Automated Reasoning (2006)
Kuncak, V., Rinard, M.: Towards efficient satisfiability checking for Boolean Algebra with Presburger Arithmetic. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 215–230. Springer, Heidelberg (2007)
Lahiri, S.K., Seshia, S.A.: The UCLID decision procedure. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 475–478. Springer, Heidelberg (2004)
McLaughlin, S., Barrett, C., Ge, Y.: Cooperating theorem provers: A case study combining HOL-Light and CVC Lite. In: PDPAR. ENTCS, vol. 144(2) (2006)
Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM TOPLAS 1(2), 245–257 (1979)
Owre, S., Rushby, J.M., Shankar, N.: PVS: A prototype verification system. In: Kapur, D. (ed.) 11th CADE, June 1992. LNCS (LNAI), vol. 607, pp. 748–752 (1992)
Parikh, R.J.: On context-free languages. J. ACM 13(4), 570–581 (1966)
Piskac, R., Kuncak, V.: Decision procedures for multisets with cardinality constraints. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp. 218–232. Springer, Heidelberg (2008)
Piskac, R., Kuncak, V.: Linear arithmetic with stars. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 268–280. Springer, Heidelberg (2008)
Pratt-Hartmann, I.: Complexity of the two-variable fragment with counting quantifiers. Journal of Logic, Language and Information 14(3), 369–395 (2005)
Ramsey, F.P.: On a problem of formal logic. Proc. London Math. Soc. s2-30, 264–286 (1930), doi:10.1112/plms/s2-30.1.264
Thatcher, J.W., Wright, J.B.: Generalized finite automata theory with an application to a decision problem of second-order logic. Mathematical Systems Theory 2(1), 57–81 (1968)
Tinelli, C., Ringeissen, C.: Unions of non-disjoint theories and combinations of satisfiability procedures. Th. Comp. Sc. 290(1), 291–353 (2003)
Tinelli, C., Zarba, C.: Combining nonstably infinite theories. Journal of Automated Reasoning 34(3) (2005)
Wies, T.: Symbolic Shape Analysis. PhD thesis. University of Freiburg (2009)
Wies, T., Piskac, R., Kuncak, V.: On Combining Theories with Shared Set Operations. Technical Report LARA-REPORT-2009-002, EPFL (May 2009)
Zee, K., Kuncak, V., Rinard, M.: Full functional verification of linked data structures. In: ACM Conf. Programming Language Design and Implementation, PLDI (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wies, T., Piskac, R., Kuncak, V. (2009). Combining Theories with Shared Set Operations. In: Ghilardi, S., Sebastiani, R. (eds) Frontiers of Combining Systems. FroCoS 2009. Lecture Notes in Computer Science(), vol 5749. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04222-5_23
Download citation
DOI: https://doi.org/10.1007/978-3-642-04222-5_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04221-8
Online ISBN: 978-3-642-04222-5
eBook Packages: Computer ScienceComputer Science (R0)