Skip to main content

Combinations of Theories for Decidable Fragments of First-Order Logic

  • Conference paper
Frontiers of Combining Systems (FroCoS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5749))

Included in the following conference series:

Abstract

The design of decision procedures for first-order theories and their combinations has been a very active research subject for thirty years; it has gained practical importance through the development of SMT (satisfiability modulo theories) solvers. Most results concentrate on combining decision procedures for data structures such as theories for arrays, bitvectors, fragments of arithmetic, and uninterpreted functions. In particular, the well-known Nelson-Oppen scheme for the combination of decision procedures requires the signatures to be disjoint and each theory to be stably infinite; every satisfiable set of literals in a stably infinite theory has an infinite model.

In this paper we consider some of the best-known decidable fragments of first-order logic with equality, including the Löwenheim class (monadic FOL with equality, but without functions), Bernays-Schönfinkel-Ramsey theories (finite sets of formulas of the form ∃ * ∀ * ϕ, where ϕ is a function-free and quantifier-free FOL formula), and the two-variable fragment of FOL. In general, these are not stably infinite, and the Nelson-Oppen scheme cannot be used to integrate them into SMT solvers. Noticing some elementary results about the cardinalities of the models of these theories, we show that they can nevertheless be combined with almost any other decidable theory.

This work is partly supported by the ANR project DECERT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  2. Baaz, M., Egly, U., Leitsch, A.: Normal form transformations. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, ch. 5, vol. I, pp. 273–333. Elsevier Science B.V, Amsterdam (2001)

    Chapter  Google Scholar 

  3. Baumgartner, P., Fuchs, A., Tinelli, C.: Implementing the Model Evolution Calculus. In: Schulz, S., Sutcliffe, G., Tammet, T. (eds.) Special Issue of the International Journal of Artificial Intelligence Tools (IJAIT). International Journal of Artificial Intelligence Tools, vol. 15 (2005)

    Google Scholar 

  4. Bernays, P., Schönfinkel, M.: Zum Entscheidungsproblem der mathematischen Logik. Math. Annalen 99, 342–372 (1928)

    Article  MathSciNet  MATH  Google Scholar 

  5. Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Perspectives in Mathematical Logic. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  6. Dreben, B., Goldfarb, W.D.: The Decision Problem: Solvable Classes of Quantificational Formulas. Addison-Wesley, Reading (1979)

    MATH  Google Scholar 

  7. Ebbinghaus, H.-D., Flum, J.: Finite Model Theory. Perspectives in Mathematical Logic. Springer, Berlin (1995)

    MATH  Google Scholar 

  8. Enderton, H.B.: A Mathematical Introduction to Logic, Orlando, Florida. Academic Press Inc., London (1972)

    MATH  Google Scholar 

  9. Fontaine, P.: Combinations of theories and the Bernays-Schönfinkel-Ramsey class. In: Beckert, B. (ed.) 4th International Verification Workshop - VERIFY 2007, Bremen (15/07/07-16/07/07) (July 2007)

    Google Scholar 

  10. Fontaine, P.: Combinations of theories for decidable fragments of first-order logic (2009), http://www.loria.fr/~fontaine/Fontaine12b.pdf

  11. Fontaine, P., Gribomont, E.P.: Decidability of invariant validation for parameterized systems. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 97–112. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Fontaine, P., Gribomont, E.P.: Combining non-stably infinite, non-first order theories. In: Ahrendt, W., Baumgartner, P., de Nivelle, H., Ranise, S., Tinelli, C. (eds.) Selected Papers from the Workshops on Disproving and the Second International Workshop on Pragmatics of Decision Procedures (PDPAR 2004), July 2005. Electronic Notes in Theoretical Computer Science, vol. 125, pp. 37–51 (2005)

    Google Scholar 

  13. Grädel, E., Kolaitis, P.G., Vardi, M.Y.: On the decision problem for two-variable first-order logic. The Bulletin of Symbolic Logic 3(1), 53–69 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gurevich, Y., Shelah, S.: Spectra of monadic second-order formulas with one unary function. In: LICS 2003: Proceedings of the 18th Annual IEEE Symposium on Logic in Computer Science, pp. 291–300. IEEE Computer Society, Washington (2003)

    Chapter  Google Scholar 

  15. Lamport, L.: Specifying Systems. Addison-Wesley, Boston (2002)

    MATH  Google Scholar 

  16. Nelson, G., Oppen, D.C.: Simplifications by cooperating decision procedures. ACM Transactions on Programming Languages and Systems 1(2), 245–257 (1979)

    Article  MATH  Google Scholar 

  17. Ramsey, F.P.: On a Problem of Formal Logic. Proceedings of the London Mathematical Society 30, 264–286 (1930)

    Article  MathSciNet  MATH  Google Scholar 

  18. Riazanov, A., Voronkov, A.: The design and implementation of Vampire. AI Communications 15(2), 91–110 (2002)

    MATH  Google Scholar 

  19. Schulz, S.: System Abstract: E 0.61. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 370–375. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  20. Sutcliffe, G., Suttner, C.: The State of CASC. AI Communications 19(1), 35–48 (2006)

    MathSciNet  MATH  Google Scholar 

  21. Tinelli, C., Harandi, M.T.: A new correctness proof of the Nelson–Oppen combination procedure. In: Baader, F., Schulz, K.U. (eds.) Frontiers of Combining Systems (FroCoS), Applied Logic, pp. 103–120. Kluwer Academic Publishers, Dordrecht (1996)

    Chapter  Google Scholar 

  22. Tinelli, C., Ringeissen, C.: Unions of non-disjoint theories and combinations of satisfiability procedures. Theoretical Computer Science 290(1), 291–353 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tinelli, C., Zarba, C.G.: Combining non-stably infinite theories. Journal of Automated Reasoning 34(3), 209–238 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wies, T., Piskac, R., Kuncak, V.: Combining theories with shared set operations. In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS (LNAI), vol. 5749, pp. 366–382. Springer, Heidelberg (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fontaine, P. (2009). Combinations of Theories for Decidable Fragments of First-Order Logic. In: Ghilardi, S., Sebastiani, R. (eds) Frontiers of Combining Systems. FroCoS 2009. Lecture Notes in Computer Science(), vol 5749. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04222-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04222-5_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04221-8

  • Online ISBN: 978-3-642-04222-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics