Skip to main content

Prior to Reconstruction – The System Function

  • Chapter
  • First Online:

Abstract

The aim of MPI is to determine a map of the spatial distribution of magnetic nanoparticles. In order to reconstruct the named particle distribution, it is necessary that the relation between the induced signals and the particle distribution is known. As it has been already discussed in Chap. 2, for 1D encoding there is a linear relation between both quantities. As it is shown in this chapter, even in the general case of 3D encoding, a linear relationship can be derived. The integral kernel of the linear imaging equation is named system function in MPI. It describes the signal that is induced by the nanoparticles as a function of space. In this chapter, the structure of the MPI system function is investigated for 1D, 2D, and 3D imaging. The analysis is based on the Langevin model described in Chap. 2. At the end of this chapter, different strategies for measuring or calculating the system function are outlined.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Boyd, J.P.: Chebyshev and Fourier Spectral Methods, 2nd edn. Dover, New York (2001)

    Google Scholar 

  2. Button, K.J.: Microwave ferrite devices: the first ten years. IEEE Trans. Microw. Theory Tech. 32(9), 1088–1096 (1984)

    Article  Google Scholar 

  3. Goodwill, P.W., Conolly, S.M.: Multi-dimensional x-space magnetic particle imaging. IEEE Trans. Med. Imaging 30(9), 1581–1590 (2011)

    Article  PubMed  Google Scholar 

  4. Goodwill, P.W., Scott, G.C., Stang, P.P., Conolly, S.M.: Narrowband magnetic particle imaging. IEEE Trans. Med. Imaging 28(8), 1231–1237 (2009)

    Article  PubMed  Google Scholar 

  5. Gleich, B., Weizenecker, J.: Tomographic imaging using the nonlinear response of magnetic particles. Nature 435(7046), 1214–1217 (2005)

    Article  PubMed  CAS  Google Scholar 

  6. Gleich, B., Weizenecker, J., Borgert, J.: Experimental results on fast 2D-encoded magnetic particle imaging. Phys. Med. Biol. 53(6), N81–N84 (2008)

    Article  PubMed  CAS  Google Scholar 

  7. Knopp, T., Biederer, S., Sattel, T., Weizenecker, J., Gleich, B., Borgert, J., Buzug, T.M.: Trajectory analysis for magnetic particle imaging. Phys. Med. Biol. 54(2), 385–397 (2009)

    Article  PubMed  CAS  Google Scholar 

  8. Knopp, T., Biederer, S., Sattel, T.F., Rahmer, J., Weizenecker, J., Gleich, B., Borgert, J., Buzug, T.M.: 2D model-based reconstruction for magnetic particle imaging. Med. Phys. 37(2), 485–491 (2010)

    Article  PubMed  Google Scholar 

  9. Knopp, T., Eggers, H., Dahnke, H., Prestin, J., Senegas, J.: Iterative off-resonance and signal decay correction for improved multi-echo imaging in MRI. IEEE Trans. Med. Imaging 28(3), 394–404 (2009)

    Article  PubMed  Google Scholar 

  10. Knopp, T., Sattel, T.F., Biederer, S., Rahmer, J., Weizenecker, J., Gleich, B., Borgert, J., Buzug, T.M.: Model-based reconstruction for magnetic particle imaging. IEEE Trans. Med. Imaging 29(1), 12–18 (2010)

    Article  PubMed  Google Scholar 

  11. Lany, M., Boero, G., Popovic, R.S.: Superparamagnetic microbead inductive detector. Rev. Sci. Instrum. 76, 1–4 (2005)

    Article  Google Scholar 

  12. Modersitzki, J.: FAIR: Flexible Algorithms for Image Registration. SIAM, Philadelphia (2009)

    Google Scholar 

  13. Nikitina, P.I., Vetoshko, P.M., Ksenevich, T.I.: New type of biosensor based on magnetic nanoparticle detection. J. Magn. Magn. Mater. 311, 445–449 (2007)

    Article  Google Scholar 

  14. Rahmer, J., Weizenecker, J., Gleich, B., Borgert, J.: Signal encoding in magnetic particle imaging. BMC Med. Imaging 9, 1–21, 4 (2009)

    Google Scholar 

  15. Schomberg, H.: Magnetic particle imaging: model and reconstruction. In Proceedings IEEE ISBI, pp. 992–995. Rotterdam (2010)

    Google Scholar 

  16. Sattel, T.F., Knopp, T., Biederer, S., Gleich, B., Weizenecker, J., Borgert, J., Buzug, T.M.: Single-sided device for magnetic particle imaging. J. Phys. D 42(1), 1–5 (2009)

    Google Scholar 

  17. Weizenecker, J., Borgert, J., Gleich, B.: A simulation study on the resolution and sensitivity of magnetic particle imaging. Phys. Med. Biol. 52(21), 6363–6374 (2007)

    Article  PubMed  CAS  Google Scholar 

  18. Weizenecker, J., Gleich, B., Rahmer, J., Dahnke, H., Borgert, J.: Three-dimensional real-time in vivo magnetic particle imaging. Phys. Med. Biol. 54(5), L1–L10 (2009)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Knopp, T., Buzug, T.M. (2012). Prior to Reconstruction – The System Function. In: Magnetic Particle Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04199-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04199-0_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04198-3

  • Online ISBN: 978-3-642-04199-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics