Skip to main content

How Magnetic Particle Imaging Works

  • Chapter
  • First Online:
Magnetic Particle Imaging
  • 1333 Accesses

Abstract

In this chapter, the basic concepts of MPI are introduced. In order to get MPI to work, two basic ingredients are needed: First, one has to find a way to get the particles to emit some kind of characteristic signal that reveals their existence. To end up at a quantitative method, this signal should also carry information about the amount of magnetic material, i.e., the particle concentration. How this signal encoding is done in MPI is explained in Sect. 2.3. As a second component, one needs a way to determine where the signal comes from in relation to the object under examination. This usually is called spatial encoding and is achieved by making the emitted characteristic particle signal spatially dependent. In Sect. 2.4, the basic principle of spatial encoding is introduced. As it turns out, the simplest method for spatial encoding is rather slow and cannot fulfill the real-time requirements that potential applications have. Therefore, the subject of Sect. 2.5 is a way to improve the MPI performance with respect to acquisition time. Still, this performance upgrade is only capable of imaging small volumes of few centimeters in length. To circumvent this size limitation, in Sect. 2.6 a way to handle large imaging volumes is introduced. Finally in Sect. 2.7, limitations of MPI in spatial resolution and sensitivity are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Field strengths are reported in units of T\({\mu }_{0}^{-1} = 4\pi \) Am − 1 in this book. This convention has been introduced in the first MPI publication (GW05) and since that time consistently used in most MPI-related publications. The aim of this convention is to report the numbers on a Tesla scale, which most readers with a background in MRI are familiar with, but, on the other hand still use the correct unit for the magnetic field strength.

  2. 2.

    Note that the cosine excitation is considered to simplify later calculations.

References

  1. Bean, C.P., Livingston, J.D.: Superparamagnetism. J. Appl. Phys. 30, 120–129 (1959)

    Article  Google Scholar 

  2. Barrett, H.H., Myers, K.: Foundations of Image Science. Wiley, New York/London/ Sydney/Toronto (2003)

    Google Scholar 

  3. Brown, W.F.: Thermal fluctuations of a single-domain particle. Phys. Rev. 130(5), 1677–1686 (1963)

    Article  Google Scholar 

  4. Buzug, T.M.: Computed Tomography: From Photon Statistics to Modern Cone-Beam CT. Springer, Berlin/Heidelberg (2008)

    Google Scholar 

  5. Ferguson, R.M. Khandhar, A.P., Minard, K.R., Krishnan, K.M.: Optimizing magnetite nanoparticles for mass sensitivity in magnetic particle imaging. Med. Phys. 38(3), 1619–1626 (2011)

    Article  PubMed  Google Scholar 

  6. Ferguson, R.M., Minard, K.R., Krishnan, K.M.: Optimization of nanoparticle core size for magnetic particle imaging. J. Magn. Magn. Mater. 321(10), 1548–1551 (2009)

    Article  PubMed  CAS  Google Scholar 

  7. Goodwill, P.W., Conolly, S.M.: The x-space formulation of the magnetic particle imaging process: one-dimensional signal, resolution, bandwidth, SNR, SAR, and magnetostimulation. IEEE Trans. Med. Imaging 29(11), 1851–1859 (2010)

    Article  PubMed  Google Scholar 

  8. Goodwill, P.W., Scott, G.C., Stang, P.P., Conolly, S.M.: Narrowband magnetic particle imaging. IEEE Trans. Med. Imaging 28(8), 1231–1237 (2009)

    Article  PubMed  Google Scholar 

  9. Gleich, B., Weizenecker, J.: Tomographic imaging using the nonlinear response of magnetic particles. Nature 435(7046), 1214–1217 (2005)

    Article  PubMed  CAS  Google Scholar 

  10. Gleich, B., Weizenecker, J., Borgert, J.: Experimental results on fast 2D-encoded magnetic particle imaging. Phys. Med. Biol. 53(6), N81–N84 (2008)

    Article  PubMed  CAS  Google Scholar 

  11. Gleich, B., Weizenecker, J., Timminger, H., Bontus, C., Schmale, I., Rahmer, J., Schmidt, J., Kanzenbach, J., Borgert, J.: Fast MPI demonstrator with enlarged field of view. In: Proceedings of ISMRM, vol. 18, p. 218. Stockholm (May 2010)

    Google Scholar 

  12. Hoult, D.I., Richards, R.E.: The signal-to-noise ratio of the nuclear magnetic resonance experiment. J. Magn. Reson. 24(1), 71–85 (1976)

    Google Scholar 

  13. Johnson, J.B.: Thermal agitation of electricity in conductors. Phys. Rev. 32, 97–109 (1928)

    Article  CAS  Google Scholar 

  14. Knopp, T., Biederer, S., Sattel, T., Weizenecker, J., Gleich, B., Borgert, J., Buzug, T.M.: Trajectory analysis for magnetic particle imaging. Phys. Med. Biol. 54(2), 385–397 (2009)

    Article  PubMed  CAS  Google Scholar 

  15. Kiss, L.B., Söderlund, J., Niklasson, G.A., Granqvist, C.G.: New approach to the origin of lognormal size distributions of nanoparticles. Nanotechnology 10, 25–28 (1999)

    Article  Google Scholar 

  16. Lüdtke-Buzug, K., Biederer, S., Sattel, T.F., Knopp, T., Buzug, T.M.: Particle-size distribution of dextran- and carboxydextran-coated superparamagnetic nanoparticles for magnetic particle imaging. In: World Congress on Medical Physics and Biomedical Engineering, Springer IFMBE Series, vol. 25/VIII, pp. 226–229. Munich (September 2009)

    Google Scholar 

  17. Lawaczeck, R., Bauer, H., Frenzel, T., Hasegawa, M., Ito, Y., Kito, K., Miwa, N., Tsutsui, H., Vogler, H., Weinmann, H.J.: Magnetic iron oxide particles coated with carboxydextran for parenteral administration and liver contrasting. Acta Radiol. 38, 584–597 (1997)

    PubMed  CAS  Google Scholar 

  18. Lohrke, J., Briel, A., Mäder, K.: Characterization of superparamagnetic iron oxide nanoparticles by asymmetrical flow-field-flow-fractionation. Nanomedicine 3(4), 437–452 (2008)

    Article  PubMed  CAS  Google Scholar 

  19. Néel, L.: Théorie du trainage magnétique des ferromagnétiques en grains fins avec applications aux terres cuites. Ann. Geophys. 5, 99–136 (1949)

    Google Scholar 

  20. Néel, L.: Some theoretical aspects of rock-magnetism. Adv. Phys. 4, 191–243 (1955)

    Article  Google Scholar 

  21. Röschmann, P.: Radiofrequency penetration and absorption in the human body: limitations to high-field whole-body nuclear magnetic resonance imaging. Med. Phys. 14(6), 922–931 (1987)

    Article  PubMed  Google Scholar 

  22. Rahmer, J., Weizenecker, J., Gleich, B., Borgert, J.: Signal encoding in magnetic particle imaging. BMC Med. Imaging 9, 1–21, 4 (2009)

    Google Scholar 

  23. Schmale, I., Rahmer, J., Gleich, B., Kanzenbach, J., Schmidt, J.D., Bontus, C., Woywode, O., Borgert, J.: First phantom and in vivo MPI images with an extended field of view. In: SPIE Medical Imaging, vol. 7965. Orlando (2011)

    Google Scholar 

  24. Weizenecker, J., Borgert, J., Gleich, B.: A simulation study on the resolution and sensitivity of magnetic particle imaging. Phys. Med. Biol. 52(21), 6363–6374 (2007)

    Article  PubMed  CAS  Google Scholar 

  25. Weizenecker, J., Gleich, B., Rahmer, J., Dahnke, H., Borgert, J.: Three-dimensional real-time in vivo magnetic particle imaging. Phys. Med. Biol. 54(5), L1–L10 (2009)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Knopp, T., Buzug, T.M. (2012). How Magnetic Particle Imaging Works. In: Magnetic Particle Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04199-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04199-0_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04198-3

  • Online ISBN: 978-3-642-04199-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics