Skip to main content

Dynamical Systems and Stochastic Programming: To Ordinary Differential Equations and Back

  • Chapter
Transactions on Computational Systems Biology XI

Part of the book series: Lecture Notes in Computer Science ((TCSB,volume 5750))

Abstract

In this paper we focus on the relation between models of biological systems consisting of ordinary differential equations (ODE) and models written in a stochastic and concurrent paradigm (sCCP stochastic Concurrent Constraint Programming). In particular, we define a method to associate a set of ODE’s to an sCCP program and a method converting ODE’s into sCCP programs. Then we study the properties of these two translations. Specifically, we show that the mapping from sCCP to ODE’s preserves rate semantics for the class of biochemical models (i.e. chemical kinetics is maintained) and we investigate the invertibility properties of the two mappings. Finally, we concentrate on the question of behavioral preservation, i.e if the models obtained applying the mappings have the same dynamics. We give a convergence theorem in the direction from ODE’s to sCCP and we provide several well-known examples in which this property fails in the inverse direction, discussing them in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Converging sciences. Trento (2004), http://www.unitn.it/events/consci/

  2. Alur, R., Belta, C., Ivancic, F., Kumar, V., Mintz, M., Pappas, G., Rubin, H., Schug, J.: Hybrid modeling and simulation of biomolecular networks. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 19–32. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  3. Antoniotti, M., Policriti, A., Ugel, N., Mishra, B.: Model building and model checking for biochemical processes. Cell Biochemistry and Biophysics 38(3), 271–286 (2003)

    Article  Google Scholar 

  4. Aziz, A., Singhal, V., Balarin, F., Brayton, R., Sangiovanni-Vincentelli, A.: Verifying continuous time markov chains. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  5. Blossey, R., Cardelli, L., Phillips, A.: A compositional approach to the stochastic dynamics of gene networks. T. Comp. Sys. Biology, 99–122 (2006)

    Google Scholar 

  6. Blossey, R., Cardelli, L., Phillips, A.: Compositionality, stochasticity and cooperativity in dynamic models of gene regulation. HFPS Journal (2007) (in print)

    Google Scholar 

  7. Bortolussi, L.: Stochastic concurrent constraint programming. In: Proceedings of 4th International Workshop on Quantitative Aspects of Programming Languages (QAPL 2006). ENTCS, vol. 164, pp. 65–80 (2006)

    Google Scholar 

  8. Bortolussi, L.: Constraint-based approaches to stochastic dynamics of biological systems. PhD thesis, PhD in Computer Science, University of Udine (2007), http://www.dmi.units.it/~bortolu/files/reps/Bortolussi-PhDThesis.pdf

  9. Bortolussi, L.: A master equation approach to differential approximations of stochastic concurrent constraint programming. In: Proceedings of QAPL 2008. ENTCS (2008) (to appear)

    Google Scholar 

  10. Bortolussi, L., Fonda, S., Policriti, A.: Constraint-based simulation of biological systems described by molecular interaction maps. In: Proceedings of IEEE conference on Bioinformatics and Biomedicine, BIBM 2007 (2007)

    Google Scholar 

  11. Bortolussi, L., Policriti, A.: Relating stochastic process algebras and differential equations for biological modeling. In: Proceedings of PASTA 2006 (2006)

    Google Scholar 

  12. Bortolussi, L., Policriti, A.: Stochastic concurrent constraint programming and differential equations. In: Proceedings of Fifth Workshop on Quantitative Aspects of Programming Languages, QAPL 2007. ENTCS, vol. 16713 (2007)

    Google Scholar 

  13. Bortolussi, L., Policriti, A.: Hybrid approximation of stochastic concurrent constraint programming. In: Proceedings of IFAC 2008 (2008)

    Google Scholar 

  14. Bortolussi, L., Policriti, A.: The importance of being (a little bit) discrete. In: Proceedings of FBTC 2008. ENTCS (2008) (to appear)

    Google Scholar 

  15. Bortolussi, L., Policriti, A.: Modeling biological systems in concurrent constraint programming. Constraints 13(1) (2008)

    Google Scholar 

  16. Cardelli, L.: From processes to odes by chemistry (2006), http://lucacardelli.name/

  17. Cardelli, L.: On process rate semantics. Theoretical Computer Science 391(3), 190–215 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ciocchetta, F., Hillston, J.: Bio-PEPA: an extension of the process algebra PEPA for biochemical networks. In: Proceeding of FBTC 2007. Workshop of CONCUR 2007 (2007)

    Google Scholar 

  19. Seattle CompBio Group, Institute for Systems Biology. Dizzy home page

    Google Scholar 

  20. Cornish-Bowden, A.: Fundamentals of Chemical Kinetics, 3rd edn. Portland Press (2004)

    Google Scholar 

  21. Elowitz, M.B., Leibler, S.: A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000)

    Article  Google Scholar 

  22. Geisweiller, N., Hillston, J., Stenico, M.: Relating continuous and discrete pepa models of signalling pathways. Theoretical Computer Science (2008) (in print)

    Google Scholar 

  23. Gillespie, D.: The chemical langevin equation. Journal of Chemical Physics 113(1), 297–306 (2000)

    Article  Google Scholar 

  24. Gillespie, D., Petzold, L.: Numerical Simulation for Biochemical Kinetics. In: System Modelling in Cellular Biology. MIT Press, Cambridge (2006)

    Google Scholar 

  25. Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. of Computational Physics 22 (1976)

    Google Scholar 

  26. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. of Physical Chemistry 81(25) (1977)

    Google Scholar 

  27. Haas, P.J.: Stochastic Petri Nets. Springer, Heidelberg (2002)

    Book  MATH  Google Scholar 

  28. Hastings, S.P., Murray, J.D.: The existence of oscillatory solutions in the field-noyes model for the belousov-zhabotinskii reaction. SIAM Journal on Applied Mathematics 28(3), 678–688 (1975)

    Article  MathSciNet  Google Scholar 

  29. Henzinger, T.A.: The theory of hybrid automata. In: LICS 1996: Proceedings of the 11th Annual IEEE Symposium on Logic in Computer Science (1996)

    Google Scholar 

  30. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  31. Hillston, J.: Fluid flow approximation of PEPA models. In: Proceedings of the Second International Conference on the Quantitative Evaluation of Systems, QEST 2005 (2005)

    Google Scholar 

  32. Kitano, H.: Foundations of Systems Biology. MIT Press, Cambridge (2001)

    Google Scholar 

  33. Kitano, H.: Computational systems biology. Nature 420, 206–210 (2002)

    Article  Google Scholar 

  34. Kohn, K.W., Aladjem, M.I., Weinstein, J.N., Pommier, Y.: Molecular interaction maps of bioregulatory networks: A general rubric for systems biology. Molecular Biology of the Cell 17(1), 1–13 (2006)

    Article  Google Scholar 

  35. Kurtz, T.G.: Solutions of ordinary differential equations as limits of pure jump markov processes. Journal of Applied Probability 7, 49–58 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kurtz, T.G.: Limit theorems for sequences of jump markov processes approximating ordinary differential processes. Journal of Applied Probability 8, 244–356 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic symbolic model checking with prism: A hybrid approach. International Journal on Software Tools for Technology Transfer 6(2), 128–142 (2004)

    Article  MATH  Google Scholar 

  38. Mcadams, H.H., Arkin, A.: Stochastic mechanisms in gene expression. PNAS 94, 814–819 (1997)

    Article  Google Scholar 

  39. Norris, J.R.: Markov Chains. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  40. Noyes, R.M., Field, R.J.: Oscillatory chemical reactions. Annual Review of Physical Chemistry 25, 95–119 (1974)

    Article  Google Scholar 

  41. Nurse, P.: Understanding cells. Nature 24 (2003)

    Google Scholar 

  42. Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebr. Program., 60-61, 17–139 (2004)

    Google Scholar 

  43. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C++: The Art of Scientific Computing. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  44. Priami, C.: Stochastic π-calculus. The Computer Journal 38(6), 578–589 (1995)

    Article  Google Scholar 

  45. Priami, C., Regev, A., Shapiro, E.Y., Silverman, W.: Application of a stochastic name-passing calculus to representation and simulation of molecular processes. Inf. Process. Lett. 80(1), 25–31 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  46. Ramsey, S., Orrell, D., Bolouri, H.: Dizzy: stochastic simulation of large-scale genetic regulatory networks. Journal of Bioinformatics and Computational Biology 3(2), 415–436 (2005)

    Article  Google Scholar 

  47. Rao, C.V., Arkin, A.P.: Stochastic chemical kinetics and the quasi-steady state assumption: Application to the gillespie algorithm. Journal of Chemical Physics 118(11), 4999–5010 (2003)

    Article  Google Scholar 

  48. Regev, A., Shapiro, E.: Cellular abstractions: Cells as computation. Nature 419 (2002)

    Google Scholar 

  49. Saraswat, V.A.: Concurrent Constraint Programming. MIT press, Cambridge (1993)

    MATH  Google Scholar 

  50. Shapiro, B.E., Levchenko, A., Meyerowitz, E.M., Wold, B.J., Mjolsness, E.D.: Cellerator: extending a computer algebra system to include biochemical arrows for signal transduction simulations. Bioinformatics 19(5), 677–678 (2003)

    Article  Google Scholar 

  51. Strogatz, S.H.: Non-Linear Dynamics and Chaos, with Applications to Physics, Biology, Chemistry and Engeneering. Perseus books, Cambridge (1994)

    Google Scholar 

  52. Vilar, J.M.G., Yuan Kueh, H., Barkai, N., Leibler, S.: Mechanisms of noise resistance in genetic oscillators. PNAS 99(9), 5991 (2002)

    Article  Google Scholar 

  53. Wilkinson, D.J.: Stochastic Modelling for Systems Biology. Chapman & Hall, Boca Raton (2006)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bortolussi, L., Policriti, A. (2009). Dynamical Systems and Stochastic Programming: To Ordinary Differential Equations and Back. In: Priami, C., Back, RJ., Petre, I. (eds) Transactions on Computational Systems Biology XI. Lecture Notes in Computer Science(), vol 5750. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04186-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04186-0_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04185-3

  • Online ISBN: 978-3-642-04186-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics