Advertisement

Cryptanalysis of a Generic Class of White-Box Implementations

  • Wil Michiels
  • Paul Gorissen
  • Henk D. L. Hollmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5381)

Abstract

A white-box implementation of a block cipher is a software implementation from which it is difficult for an attacker to extract the cryptographic key. Chow et al. published white-box implementations for AES and DES. These implementations are based on ideas that can be used to derive white-box implementations for other block ciphers as well. In particular, the ideas can be used to derive a white-box implementation for any substitution linear-transformation (SLT) cipher. Although the white-box implementations of AES and DES have been cryptanalyzed, the cryptanalyses published use typical properties of AES and DES. It is therefore an open question whether an SLT cipher exists for which the techniques of Chow et al. result in a secure white-box implementation. In this paper we largely settle this question by presenting an algorithm that is able to extract the key from such an implementation under a mild condition on the diffusion matrix. The condition is, for instance, satisfied by all MDS matrices. Our result can serve as a basis to design block ciphers and to develop white-box techniques that result in secure white-box implementations.

Keywords

white-box cryptography AES Serpent cryptanalysis substitution linear-transformation network MDS matrix 

References

  1. 1.
    Anderson, R.J., Biham, E., Knudsen, L.R.: Serpent: A proposal for the advanced encryption standard. In: Proceedings of the First AES Candidate Conference (1998)Google Scholar
  2. 2.
    Billet, O., Gilbert, H., Ech-Chatbi, C.: Cryptanalysis of a white box AES implementation. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 227–240. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Biryukov, A., De Cannière, C., Braeken, A., Preneel, B.: A Toolbox for Cryptanalysis: Linear and Affine Equivalence Algorithms. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 33–50. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Chow, S., Eisen, P., Johnson, H., van Oorschot, P.C.: A white-box DES implementation for DRM applications. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 1–15. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Chow, S., Eisen, P., Johnson, H., van Oorschot, P.C.: White-box cryptography and an AES implementation. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 250–270. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Daemen, J., Rijmen, V.: The Design of Rijndael. Springer, Heidelberg (2002)CrossRefzbMATHGoogle Scholar
  7. 7.
    Goubin, L., Masereel, J.-M., Quisquater, M.: Cryptanalysis of white box DES implementations. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 278–295. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Jacob, M., Boneh, D., Felten, E.W.: Attacking an obfuscated cipher by injecting faults. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 16–31. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Link, H.E., Neumann, W.D.: Clarifying Obfuscation: Improving the Security of White-Box DES. In: International Symposium on Information Technology: Coding and Computing, pp. 679–684 (2005)Google Scholar
  10. 10.
    Schneier, B., Kelsey, J., Whiting, D., Wagner, D., Hall, C., Ferguson, N.: The Twofish Encryption Algorithm: A 128-Bit Block Cipher. Wiley, Chichester (1999)zbMATHGoogle Scholar
  11. 11.
    Vaudenay, S.: On the Need for Multipermutations: Cryptanalysis of MD4 and SAFER. In: Proceedings of the 2nd International Workshop on Fast Software Encryption, pp. 286–297 (1995)Google Scholar
  12. 12.
    Wyseur, B., Michiels, W., Gorissen, P., Preneel, B.: Cryptanalysis of white-box DES implementations with arbitrary external encodings. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 264–277. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Wil Michiels
    • 1
  • Paul Gorissen
    • 1
  • Henk D. L. Hollmann
    • 1
  1. 1.Philips Research LaboratoriesEindhovenThe Netherlands

Personalised recommendations