ECC Is Ready for RFID – A Proof in Silicon

  • Daniel Hein
  • Johannes Wolkerstorfer
  • Norbert Felber
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5381)


This paper presents the silicon chip ECCon, an Elliptic Curve Cryptography processor for application in Radio-Frequency Identification. The circuit is fabricated on a 180 nm CMOS technology. ECCon features small silicon size (15K GE) and has low power consumption (8.57 μW). It computes 163-bit ECC point-multiplications in 296k cycles and has an ISO 18000-3 RFID interface. ECCon’s very low and nearly constant power consumption makes it the first ECC chip that can be powered passively. This major breakthrough is possible because of a radical change in hardware architecture. The ECCon datapath operates on 16-bit words, which is similar to ECC instruction-set extensions. A number of innovations on the algorithmic and on the architectural level substantially increased the efficiency of 163-bit ECC. ECCon is the first demonstration that the proof of origin via electronic signatures can be realized on RFID tags in 180 nm CMOS and below.


Radio-Frequency Identification (RFID) Elliptic curve cryptography (ECC) Anti-Counterfeiting Modular Multiplication 


  1. [BBD+08]
    Bock, H., Braun, M., Dichtl, M., Hess, E., Heyszl, J., Kargl, W., Koroschetz, H., Meyer, B., Seuschek, H.: A milestone towards RFID products offering asymmetric authentication based on elliptic curve cryptography. In: Workshop on RFID Security, RFIDsec (2008)Google Scholar
  2. [BMS+06]
    Batina, L., Mentens, N., Sakiyama, K., Preneel, B., Verbauwhede, I.: Low-cost elliptic curve cryptography for wireless sensor networks. In: Proceedings of Third European Workshop on Security and Privacy in Ad hoc and Sensor Networks (2006)Google Scholar
  3. [FDW04]
    Feldhofer, M., Dominikus, S., Wolkerstorfer, J.: Strong authentication for RFID systems using the AES algorithm. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 357–370. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. [FW07]
    Fürbass, F., Wolkerstorfer, J.: ECC processor with low die size for RFID applications. In: Proc. IEEE International Symposium on Circuits and Systems, ISCAS (2007)Google Scholar
  5. [FWR05]
    Feldhofer, M., Wolkerstorfer, J., Rijmen, V.: AES implementation on a grain of sand. IEEE Proceedings on Information Security 152, 13–20 (2005)CrossRefGoogle Scholar
  6. [GK03]
    Großschädl, J., Kamendje, G.-A.: Instruction set extension for fast elliptic curve cryptography over binary finite fields GF(2m). In: Proc. IEEE International Conference on Application-Specific Systems, Architectures, and Processors (2003)Google Scholar
  7. [Gro02]
    Großschädl, J.: Instruction set extension for long integer modulo arithmetic on RISC-based smart cards. In: Proc. 14th Symposium on Computer Architecture and High Performance Computing (2002)Google Scholar
  8. [ISO04]
    ISO/IEC/JTC 1/SC 31. ISO/IEC 18000 Information technology – Radio frequency identification for item management. Technical report, International Organization for Standardization, Geneva, Switzerland (2004)Google Scholar
  9. [KP06]
    Kumar, S., Paar, C.: Are standards compliant elliptic curve cryptosystems feasible on RFID? Printed handout of Workshop on RFID Security (RFIDSec) (July 2006)Google Scholar
  10. [LV07]
    Lee, Y.K., Verbauwhede, I.: A compact architecture for montgomery elliptic curve scalar multiplication processor. In: Kim, S., Yung, M., Lee, H.-W. (eds.) WISA 2007. LNCS, vol. 4867, pp. 115–127. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. [Mon87]
    Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization. Mathematics of Computation 48, 243–264 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  12. [Nat00]
    National Institute for Standards and Technology. Digital Signature Standard (DSS). Technical report, NIST (January 2000)Google Scholar
  13. [Org07]
    Organisation for Economic Co-operation and Development. The economic impact of counterfeiting and piracy. Technical report, OECD (2007)Google Scholar
  14. [OScE04]
    Öztürk, E., Sunar, B., Savaş, E.: Low-power elliptic curve cryptography using scaled modular arithmetic. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 92–106. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. [SBM+06]
    Sakiyama, K., Batina, L., Mentens, N., Preneel, B., Verbauwhede, I.: Small-footprint ALU for public-key processors for pervasive security. In: Workshop on RFID Security (2006)Google Scholar
  16. [Wol05]
    Wolkerstorfer, J.: Is elliptic-curve cryptography suitable to secure RFID tags? In: Workshop on RFID and Lightweight Crypto (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Daniel Hein
    • 1
  • Johannes Wolkerstorfer
    • 2
  • Norbert Felber
    • 1
  1. 1.Swiss Federal Institute of Technology Zürich, IISZürichSwitzerland
  2. 2.Graz University of Technology, IAIKGrazAustria

Personalised recommendations