Advertisement

Faster Halvings in Genus 2

  • Peter Birkner
  • Nicolas Thériault
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5381)

Abstract

We study divisor class halving for hyperelliptic curves of genus 2 over binary fields. We present explicit halving formulas for the most interesting curves (from a cryptographic perspective), as well as all other curves whose group order is not divisible by 4. Each type of curve is characterized by the degree and factorization form of the polynomial h(x) in the curve equation. For each of these curves, we provide explicit halving formulæ for all possible divisor classes, and not only the most frequent case where the degree of the first polynomial in the Mumford representation is 2. In the optimal performance case, where h(x) = x, we also improve on the state-of-the-art and when h(x) is irreducible of degree 2, we achieve significant savings over both the doubling as well as the previously fastest halving formulas.

Keywords

hyperelliptic curve genus 2 halving binary field 

References

  1. 1.
    Avanzi, R.M., Cohen, H., Doche, C., Frey, G., Lange, T., Nguyen, K., Vercauteren, F.: Handbook of Elliptic and Hyperelliptic Curve Cryptography. Chapman & Hall/CRC, Boca Raton (2006)MATHGoogle Scholar
  2. 2.
    Avanzi, R.M.: A Note on Square Roots in Binary Fields (preprint)Google Scholar
  3. 3.
    Birkner, P.: Efficient Divisor Class Halving on Genus Two Curves. In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 317–326. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Fong, K., Hankerson, D., López, J., Menezes, A.: Field Inversion and Point Halving Revisited. IEE Trans. Computers 53(8), 1047–1059 (2004)CrossRefGoogle Scholar
  5. 5.
    Gaudry, P.: Index calculus for abelian varieties and the elliptic curve discrete logarithm problem (2004) (preprint), http://eprint.iacr.org/2004/073/
  6. 6.
    Gaudry, P., Hess, F., Smart, N.P.: Constructive and destructive facets of Weil descent on elliptic curves. Journal of Cryptology 15(1), 19–46 (2002)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Kitamura, I., Katagi, M., Takagi, T.: A Complete Divisor Class Halving Algorithm for Hyperelliptic Curve Cryptosystems of Genus Two (preprint) (2005), http://eprint.iacr.org/2005/255/
  8. 8.
    Kitamura, I., Katagi, M., Takagi, T.: A complete divisor class halving algorithm for hyperelliptic curve cryptosystems of genus two. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 146–157. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Knudsen, E.W.: Elliptic scalar multiplication using point halving. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 135–149. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Lange, T.: Formulae for Arithmetic on Genus 2 Hyperelliptic Curves. Applicable Algebra in Engineering. Communication and Computing 15(5), 295–328 (2005)MathSciNetMATHGoogle Scholar
  11. 11.
    Lange, T., Stevens, M.: Efficient doubling on genus two curves over binary fields. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 170–181. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Lidl, R., Niederreiter, H.: Finite Fields, 2nd edn. Cambridge University Press, Cambridge (1997)MATHGoogle Scholar
  13. 13.
    Pohlig, S., Hellman, M.: An improved algorithm for computing logarithms over GF( p) and its cryptographic significance. IEEE Trans. Inform. Theory IT-24, 106–110 (1978)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Schroeppel, R.: Elliptic curves: Twice as fast! In: Crypto 2000 Rump Session (2000)Google Scholar
  15. 15.
    Thériault, N.: Weil Descent for Artin-Schreier Curves (preprint) (2003), http://homepage.mac.com/ntheriau

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Peter Birkner
    • 1
  • Nicolas Thériault
    • 2
  1. 1.Department of Mathematics and Computer Science, Coding Theory and CryptologyEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Instituto de Matemática y FísicaUniversidad de Talca, CasillaTalcaChile

Personalised recommendations