Advertisement

Using DCT Features for Printing Technique and Copy Detection

  • Christian Schulze
  • Marco Schreyer
  • Armin Stahl
  • Thomas Breuel
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 306)

Abstract

The ability to discriminate between original documents and their photocopies poses a problem when conducting automated forensic examinations of large numbers of confiscated documents. This paper describes a novel frequency domain approach for printing technique and copy detection of scanned document images. Tests using a dataset consisting of 49 laser-printed, 14 inkjet-printed and 46 photocopied documents demonstrate that the approach outperforms existing spatial domain methods for image resolutions exceeding 200 dpi. An increase in classification accuracy of approximately 5% is achieved for low scan resolutions of 300 dpi and 400 dpi. In addition, the approach has the advantage of increased processing speed.

Keywords

Printing technique and copy detection discrete cosine transformation 

References

  1. 1.
    N. Ahmed, T. Natarajan and K. Rao, Discrete cosine transform, IEEE Transactions on Computers, vol. 23(1), pp. 90–93, 1974.CrossRefGoogle Scholar
  2. 2.
    Y. Akao, K. Kobayashi and Y. Seki, Examination of spur marks found on inkjet-printed documents, Journal of Forensic Science, vol. 50(4), pp. 915–923, 2005.CrossRefGoogle Scholar
  3. 3.
    H. Baird, The state of the art of document image degradation modeling, Proceedings of the Fourth International Association for Pattern Recognition Workshop on Document Analysis Systems, pp. 1–16, 2000.Google Scholar
  4. 4.
    C. Chang and C. Lin, LIBSVM: A Library for Support Vector Machines, Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan (www.csie .ntu.edu.tw/~cjlin/libsvm).Google Scholar
  5. 5.
    J. Chim, C. Li, N. Poon and S. Leung, Examination of counterfeit banknotes printed by all-in-one color inkjet printers, Journal of the American Society of Questioned Document Examiners, vol. 7(2), pp. 69–75, 2004.Google Scholar
  6. 6.
    H. Dasari and C. Bhagvati, Identification of printing process using HSV colour space, Proceedings of the Seventh Asian Conference on Computer Vision, pp. 692–701, 2006.CrossRefGoogle Scholar
  7. 7.
    G. Gupta, R. Sultania, S. Mondal, S. Saha and B. Chanda, A structured approach to detect the scanner-printer used in generating fake documents, Proceedings of the Third International Conference on Information Systems Security, pp. 250–253, 2007.CrossRefGoogle Scholar
  8. 8.
    C. Hsu, C. Chang and C. Lin, A Practical Guide to Support Vector Classification, Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan (www .csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf), 2003.Google Scholar
  9. 9.
    J. Kelly and B. Lindblom (Eds.), Scientific Examination of Questioned Documents, CRC Press, Boca Raton, Florida, 2006.Google Scholar
  10. 10.
    H. Kipphan, Handbook of Print Media, Springer, Heidelberg, Germany, 2001.CrossRefGoogle Scholar
  11. 11.
    C. Lampert, L. Mei and T. Breuel, Printing technique classification for document counterfeit detection, Proceedings of the International Conference on Computational Intelligence and Security, pp. 639–644, 2006.Google Scholar
  12. 12.
    C. Li, W. Chan, Y. Cheng and S. Leung, The differentiation of color laser printers, Journal of the American Society of Questioned Document Examiners, vol. 7(2), pp. 105–109, 2004.Google Scholar
  13. 13.
    J. Makris, S. Krezias and V. Athanasopoulou, Examination of newspapers, Journal of the American Society of Questioned Document Examiners, vol. 9(2), pp. 71–75, 2006.Google Scholar
  14. 14.
    A. Mikkilineni, P. Chiang, G. Ali, G. Chiu, J. Allebach and E. Delp, Printer identification based on gray level co-occurrence features for security and forensic applications, Proceedings of the SPIE, vol. 5681, pages 430–440, 2005.Google Scholar
  15. 15.
    J. Oliver and J. Chen, Use of signature analysis to discriminate digital printing technologies, Proceedings of the International Conference on Digital Printing Technologies, pp. 218–222, 2002.Google Scholar
  16. 16.
    A. Osborn and A. Osborn, Questioned documents, Journal of the American Society of Questioned Document Examiners, vol. 5(1), pp. 39–44, 2002.Google Scholar
  17. 17.
    C. Schulze, M. Schreyer, A. Stahl and T. Breuel, Evaluation of gray level features for printing technique classification in high-throughput document management systems, Proceedings of the Second International Workshop on Computational Forensics, pp. 35–46, 2008.CrossRefGoogle Scholar
  18. 18.
    J. Tchan, The development of an image analysis system that can detect fraudulent alterations made to printed images, Proceedings of the SPIE, vol. 5310, pp. 151–159, 2004.Google Scholar
  19. 19.
    J. Tweedy, Class characteristics of counterfeit protection system codes of color laser copiers, Journal of the American Society of Questioned Document Examiners, vol. 4(2), pp. 53–66, 2001.Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2009

Authors and Affiliations

  • Christian Schulze
  • Marco Schreyer
  • Armin Stahl
  • Thomas Breuel

There are no affiliations available

Personalised recommendations