Evaluation of a Foreground Segmentation Algorithm for 3D Camera Sensors

  • Luca Bianchi
  • Piercarlo Dondi
  • Riccardo Gatti
  • Luca Lombardi
  • Paolo Lombardi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5716)

Abstract

Our interest is focusing on the innovative time-of-flight (TOF) cameras. In this paper we present our approach to foreground segmentation, based on smart-seeded region growing. The seeding strategy makes use of the characteristic intensity signal provided by TOF cameras, and growing is proved by experimental measurements to produce a pixel-wise segmentation of 82%-92% quality. Compared to background subtraction, our approach uses more explicitly the unique capacity of TOF cameras to isolate foreground objects on the basis of their distance. Our work will find an application in gate monitoring and passage surveillance.

Keywords

region growing tracking gate monitoring time-of-flight cameras 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kolb, A., Barth, E., Koch, R.: ToF-Sensors: New Dimensions for Realism and Interactivity, In: CVPR 2008, Workshop On Time of Flight Camera based Computer Vision, TOF-CV (2008), http://www-video.eecs.berkeley.edu/Proceedings/CVPR_WS2008/data/workshops16.htm
  2. 2.
    Gvili, R., Kaplan, A., Ofek, E., Yahav, G.: Depth Key. In: SPIE Electronic Imaging 2003 Conference, Santa Clara, CA (2003)Google Scholar
  3. 3.
    Oggier, T., Lehmann, M., Kaufmann, R., Schweizer, M., Richter, M., Metzler, P., Lang, G., Lustenberger, F., Blanc, N.: An all-solid-state optical range camera for 3D real-time imaging with sub-centimeter depth resolution (SwissRanger). In: Mazuray, L., Rogers, P.J., Wartmann, R. (eds.) Optical Design and Engineering, Proceedings of the SPIE, vol. 5249, pp. 534–545 (2004)Google Scholar
  4. 4.
    Felder, J., Weiss, S.: Time-of-Flight Imaging for Industrial Applications, Master Thesis, ETH Swiss Federal Institute of Technology Zurich (2007)Google Scholar
  5. 5.
    Witzner, D., Mads, H., Hansen, S., Kirschmeyer, M., Larsen, R., Silvestre, D.: Cluster Tracking with Time-of-Flight Cameras, CVPR 2008, Workshop On Time of Flight Camera based Computer Vision, TOF-CV (2008), http://www-video.eecs.berkeley.edu/Proceedings/CVPR_WS2008/data/workshops16.htm
  6. 6.
    Guðmundsson, S.A., Larsen, R., Aanæs, H., Pardàs, M., Casas, J.R.: TOF Imaging in Smart Room Environments towards Improved People Tracking. In: CVPR 2008 Workshop On Time of Flight Camera based Computer Vision, TOF-CV (2008), http://www-video.eecs.berkeley.edu/Proceedings/CVPR_WS2008/data/workshops16.htm
  7. 7.
    Bevilacqua, A., Di Stefano, L., Azzari, P.: People tracking using a time-of-flight depth sensor. In: IEEE International Conference on Video and Signal Based Surveillance, pp. 89–94 (2006)Google Scholar
  8. 8.
    Adams, R., Bischof, L.: Seeded Region Growing. IEEE Transactions on Pattern Analysis and Machine Intelligence 16(6), 641–647 (1994)CrossRefGoogle Scholar
  9. 9.
    Ester, M., Kriegel, H.P., Sander, J.: A density-based algorithm for discovering clusters in large spatial databases with noise, pp. 226–231. AAAI Press, Menlo Park (1996)Google Scholar
  10. 10.
    Oprisescu, S., Falie, D., Ciuc, M., Buzuloiu, V.: Measurements with ToF Cameras and Their Necessary Corrections. In: Proc. of ISSCS 2007 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Luca Bianchi
    • 1
  • Piercarlo Dondi
    • 1
  • Riccardo Gatti
    • 1
  • Luca Lombardi
    • 1
  • Paolo Lombardi
    • 1
  1. 1.Dept. of Computer Engineering and System ScienceUniversity of PaviaPaviaItaly

Personalised recommendations