A Semi-automated Method for the Measurement of the Fetal Nuchal Translucency in Ultrasound Images

  • Ezio Catanzariti
  • Giovanni Fusco
  • Francesco Isgrò
  • Salvatore Masecchia
  • Roberto Prevete
  • Matteo Santoro
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5716)

Abstract

Nowadays the measurement of the nuchal translucency thickness is being used as part of routine ultrasound scanning during the end of the first trimester of pregnancy, for the screening of chromosomal defects, as trisomy 21. Currently, the measurement is being performed manually by physicians. The measurement can take a long time for being accomplished, needs to be performed by highly skilled operators, and is prone to errors. In this paper we present an algorithm that automatically detects the border of the nuchal translucency, once a region of interest has been manually identified. The algorithm is based on the minimisation of a cost function, and the optimisation is performed using the dynamic programming paradigm. The method we present overcomes several of the drawbacks present in the state of the art algorithms.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hecht, C., Hook, E.: The imprecision in rates of down syndrome by 1-year maternal age intervals: a critical analysis of rates used in biochemical screening. Prenatal Diagnosis 14, 729–738 (1994)CrossRefGoogle Scholar
  2. 2.
    Nicolaides, K., Sebire, N., Snijders, R.: The 11-14 weeks scan: the diagnosis of fetal abnormalities. Parthenon Publishing, New York (1999)Google Scholar
  3. 3.
    Nicolaides, K., Azar, G., Byrne, D., Mansur, C., Marrks, K.: Fetal nuchal translucency: ultrasound screening for chromosomal defects in first trimester of pregnancy. BMJ 304, 867–869 (1992)CrossRefGoogle Scholar
  4. 4.
    Pandya, P., Snijders, R., Johnson, S., Brizot, M., Nicolaides, K.: Screening for fetal trisomies by maternal age and fetal nuchal translucency thickness at 10 to 14 weeks of gestation. BJOG 102, 957–962 (1995)CrossRefGoogle Scholar
  5. 5.
    Snijders, R., Noble, P., Souka, A., Nicolaides, K.: UK multicentre project on assesment of risk of trimomy 21 by maternal age and fetal nuchal translucency thickness at 10-14 weeks of gestation. Lancet 352, 343–346 (1998)CrossRefGoogle Scholar
  6. 6.
    Abuhamad, A.: Technical aspects of nuchal translucency measurement. Seminars in perinatology 29, 376–379 (2006)CrossRefGoogle Scholar
  7. 7.
    Pandya, P., Altman, D., Brizot, M., Pettersen, H., Nicolaides, K.: Repeatability of measurement of fetal nuchal translucency thickness. Ultrasound in Obstetrics and Gynecology 5, 334–337 (1995)CrossRefGoogle Scholar
  8. 8.
    Lee, Y., Kim, M., Kim, M.: Robust border enhancement and detection for measurement of fetal nuchal translucency in ultrasound images. Medical and Biological Engineering and Computing 45(11), 1143–1152 (2007)CrossRefGoogle Scholar
  9. 9.
    Chalana, V., Winter, T., Cyr, D., Haynor, D., Kim, Y.: Automatic fetal head measurements from sonographic images. Academic Radiology 3(8), 628–635 (1996)CrossRefGoogle Scholar
  10. 10.
    Hanna, C., Youssef, M.: Automated measurements in obstetric ultrasound images. In: Proceedings of the International Conference Image Processing, vol. 3, pp. 714–717 (1997)Google Scholar
  11. 11.
    Carneiro, G., Georgescu, B., Good, S., Comaniciu, D.: Detection and measurement of fetal anatomies from ultrasound images using a constrained probabilistic boosting tree. IEEE Transactions on Medical Imaging 27(9), 1342–1355 (2008)CrossRefGoogle Scholar
  12. 12.
    Pathak, S., Chalana, V., Kim, Y.: Interactive automatic fetal head measurements from ultrasound images using multimedia computer technology. Ultrasound in Medicine and Biology 23(5), 665–673 (1997)CrossRefGoogle Scholar
  13. 13.
    Bernardino, F., Cardoso, R., Montenegro, N., Bernardes, J., de Sa, J.M.: Semiautomated ultrasonographic measurement of fetal nuchal translucency using a computer software tool. Ultrasound in Medicine and Biology 24(1), 51–54 (1998)CrossRefGoogle Scholar
  14. 14.
    Weikert, J.: Coherence-enhancing diffusion filtering. International Journal of Computer Vision 31(2-3), 111–127 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ezio Catanzariti
    • 1
  • Giovanni Fusco
    • 1
  • Francesco Isgrò
    • 1
  • Salvatore Masecchia
    • 1
  • Roberto Prevete
    • 2
  • Matteo Santoro
    • 2
  1. 1.Dipartimento di Scienze FisicheUniversità degli Studi di Napoli Federico IINapoliItaly
  2. 2.Dipartimento di Informatica e Scienze dell’InformazioneUniversità degli Studi di GenovaGenovaItaly

Personalised recommendations