We propose a class of complex weight structures called ranked semirings for the compact representation of morphological analysers based on weighted finite-state automata. In an experiment, we compare this compact representation with the conventional representation based on letter transducers.


  1. 1.
    Koskenniemi, K.: Two-level morphology: A general computational model for word-form recognition and production. In: Proceedings of COLING 1984, Stanford University, California, pp. 178–181 (1984)Google Scholar
  2. 2.
    Mohri, M.: Finite-state transducers in language and speech processing. Computational Linguistics 23, 269–311 (1997)MathSciNetGoogle Scholar
  3. 3.
    Mohri, M.: Minimization algorithms for sequential transducers. Theoretical Computer Science 234, 177–201 (2000)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Kuich, W., Salomaa, A.: Semirings, Automata, Languages. EATCS Monographs on Theoretical Computer Science, vol. 5. Springer, Heidelberg (1986)CrossRefMATHGoogle Scholar
  5. 5.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley Series in Computer Science. Addison-Wesley Publishing Company, Reading (1979)MATHGoogle Scholar
  6. 6.
    Mohri, M.: Semiring Frameworks and Algorithms for Shortest-Distance Problems. Journal of Automata, Languages and Combinatorics 7, 321–350 (2002)MathSciNetMATHGoogle Scholar
  7. 7.
    Volk, M.: Choosing the right lemma when analysing german nouns. In: Multilinguale Corpora: Codierung, Strukturierung, Analyse. 11. Jahrestagung der GLDV. Frankfurt, pp. 304–310 (1999)Google Scholar
  8. 8.
    Geyken, A., Hanneforth, T.: Tagh: A complete morphology for german based on weighted finite-state automata. In: Yli-Jyrä, A., Karttunen, L., Karhumäki, J. (eds.) FSMNLP 2005. LNCS (LNAI), vol. 4002, pp. 55–66. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Geyken, A., Schrader, N.: LexikoNet, a lexical database based on role and type hierarchies. In: Proceedings of LREC (2006)Google Scholar
  10. 10.
    Hanneforth, T.: FSM<> 2.0 – C++ library for manipulating (weighted) finite automata (2004), http://www.ling.uni-potsdam.de/fsm

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Thomas Hanneforth
    • 1
  1. 1.Department for LinguisticsUniversity of PotsdamGermany

Personalised recommendations