Advertisement

Computing 3D Periodic Triangulations

  • Manuel Caroli
  • Monique Teillaud
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5757)

Abstract

This work is motivated by the need for software computing 3D periodic triangulations in numerous domains including astronomy, material engineering, biomedical computing, fluid dynamics etc. We design an algorithmic test to check whether a partition of the 3D flat torus into tetrahedra forms a triangulation (which subsumes that it is a simplicial complex). We propose an incremental algorithm that computes the Delaunay triangulation of a set of points in the 3D flat torus without duplicating any point, whenever possible; our algorithmic test detects when such a duplication can be avoided, which is usually possible in practical situations. Even in cases where point duplication is necessary, our algorithm always computes a triangulation that is homeomorpic to the flat torus. To the best of our knowledge, this is the first algorithm of this kind whose output is provably correct. The implementation will be released in Cgal[7].

Keywords

Simplicial Complex Voronoi Diagram Computational Geometry Input Point Incremental Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aanjaneya, M., Teillaud, M.: Triangulating the real projective plane. In: Mathematical Aspects of Computer and Information Sciences (2007)Google Scholar
  2. 2.
    Armstrong, M.A.: Basic Topology. Springer, Heidelberg (1982)zbMATHGoogle Scholar
  3. 3.
    Bowyer, A.: Computing Dirichlet tessellations. The Computer Journal 24, 162–166 (1981)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Caroli, M., Kruithof, N., Teillaud, M.: Decoupling the CGAL 3D triangulations from the underlying space. In: Workshop on Algorithm Engineering and Experiments, pp. 101–108 (2008)Google Scholar
  5. 5.
    Caroli, M., Teillaud, M.: Video: On the computation of 3D periodic triangulations. In: Proceedings of the twenty-fourth Annual Symposium on Computational Geometry, pp. 222–223 (2008)Google Scholar
  6. 6.
    Caroli, M., Teillaud, M.: Computing 3D periodic triangulations. Research Report 6823, INRIA (2009), http://hal.inria.fr/inria-00356871
  7. 7.
    Cgal, Computational Geometry Algorithms Library, http://www.cgal.org
  8. 8.
    Cheng, S.-W., Dey, T.K., Levine, J.A.: A practical Delaunay meshing algorithm for a large class of domains. In: Proceedings of the sixteenth International Meshing Roundtable, pp. 477–494 (2007)Google Scholar
  9. 9.
    Daverman, R.J., Sher, R.B. (eds.): Handbook of Geometric Topology. Elsevier, Amsterdam (2002)zbMATHGoogle Scholar
  10. 10.
    de Fabritiis, G., Coveney, P.V.: Dynamical geometry for multiscale dissipative particle dynamics (2003), http://xxx.lanl.gov/abs/cond-mat/0301378v1
  11. 11.
    Delage, C.: Spatial sorting. In: CGAL editorial Board (eds.) CGAL User and Reference Manual, 3.4 edn. (2008)Google Scholar
  12. 12.
    Devillers, O.: The Delaunay hierarchy. International Journal of Foundations of Computer Science 13, 163–180 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Devillers, O., Teillaud, M.: Perturbations and vertex removal in a 3D Delaunay triangulation. In: Proceedings of the fourteenth ACM-SIAM Symposium on Discrete Algorithms, pp. 313–319 (2003)Google Scholar
  14. 14.
    Dolbilin, N.P., Huson, D.H.: Periodic Delone tilings. Periodica Mathematica Hungarica 34(1-2), 57–64 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Campayo, D.D.: Sklogwiki - Boundary conditions, http://www.sklogwiki.org/SklogWiki/index.php/Boundary_conditions
  16. 16.
    Graham, R.L., Grötschel, M., Lovász, L. (eds.): Handbook of Combinatorics. Elsevier, Amsterdam (1995)zbMATHGoogle Scholar
  17. 17.
    Grima, C.I., Márquez, A.: Computational Geometry on Surfaces. Kluwer Academic Publishers, Dordrecht (2001)CrossRefzbMATHGoogle Scholar
  18. 18.
    Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)zbMATHGoogle Scholar
  19. 19.
    Held, M.: Vroni: An engineering approach to the reliable and efficient computation of Voronoi diagrams of points and line segments. Computational Geometry: Theory and Applications 18, 95–123 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Henle, M.: A Combinatorial Introduction to Topology. Dover publication, New York (1979)zbMATHGoogle Scholar
  21. 21.
    Hert, S., Seel, M.: dD convex hulls and Delaunay triangulations. In: CGAL Editorial Board (eds.) CGAL User and Reference Manual, 3.4 edn. (2008)Google Scholar
  22. 22.
    Lee, J.M.: Introduction to Topological Manifolds. Springer, New York (2000)zbMATHGoogle Scholar
  23. 23.
    Mazón, M., Recio, T.: Voronoi diagrams on orbifolds. Computational Geometry: Theory and Applications 8, 219–230 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Pion, S., Teillaud, M.: 3D triangulation data structure. In: CGAL Editorial Board (eds.), CGAL User and Reference Manual. 3.4 edn. (2008)Google Scholar
  25. 25.
    Pion, S., Teillaud, M.: 3D triangulations. In: CGAL Editorial Board (eds.) CGAL User and Reference Manual, 3.4 edn. (2008)Google Scholar
  26. 26.
  27. 27.
    Rineau, L., Yvinec, M.: Meshing 3D domains bounded by piecewise smooth surfaces. In: Proceedings of the sixteenth International Meshing Roundtable, pp. 443–460 (2007)Google Scholar
  28. 28.
    Rineau, L., Yvinec, M.: 3D surface mesh generation. In: CGAL Editorial Board (eds.) CGAL User and Reference Manual, 3.4 edn. (2008)Google Scholar
  29. 29.
    Robins, V.: Betti number signatures of homogeneous Poisson point processes. Physical Review E 74(061107) (2006)Google Scholar
  30. 30.
    Rote, G., Vegter, G.: Computational topology: An introduction. In: Boissonnat, J.-D., Teillaud, M. (eds.) Effective Computational Geometry for Curves and Surfaces. Mathematics and Visualization, pp. 277–312. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  31. 31.
    Shewchuk, J.R.: Triangle: Engineering a 2d quality mesh generator and Delaunay triangulator. In: First Workshop on Applied Computational Geometry, May 1996. Association for Computing Machinery (1996)Google Scholar
  32. 32.
    Shewchuk, J.R.: Tetrahedral mesh generation by Delaunay refinement. In: Proceedings of the fourteenth Annual Symposium on Computational Geometry, pp. 86–95. ACM Press, New York (1998)CrossRefGoogle Scholar
  33. 33.
    Spanier, E.H.: Algebraic Topology. Springer, New York (1966)zbMATHGoogle Scholar
  34. 34.
    Thompson, K.E.: Fast and robust Delaunay tessellation in periodic domains. International Journal for Numerical Methods in Engineering 55, 1345–1366 (2002)CrossRefzbMATHGoogle Scholar
  35. 35.
    Thurston, W.P.: Three-Dimensional Geometry and Topology. Princeton University Press, Princeton (1997)CrossRefzbMATHGoogle Scholar
  36. 36.
    Weiss, D.: How hydrophobic Buckminsterfullerene affects surrounding water structure. INRIA Geometrica Seminar (March 2008), http://www-sop.inria.fr/geometrica
  37. 37.
    Wilson, P.M.H.: Curved Spaces. Cambridge University Press, Cambridge (2008)Google Scholar
  38. 38.
    Yvinec, M.: 2D triangulations. In: CGAL Editorial Board (eds), CGAL User and Reference Manual. 3.4 edn. (2008)Google Scholar
  39. 39.
    Zomorodian, A.: Topology for Computing. Cambridge University Press, Cambridge (2005)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Manuel Caroli
    • 1
  • Monique Teillaud
    • 1
  1. 1.INRIA Sophia Antipolis – MéditerranéeFrance

Personalised recommendations