Advertisement

Altruism in Atomic Congestion Games

  • Martin Hoefer
  • Alexander Skopalik
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5757)

Abstract

This paper studies the effects of introducing altruistic agents into atomic congestion games. Altruistic behavior is modeled by a trade-off between selfish and social objectives. In particular, we assume agents optimize a linear combination of personal delay of a strategy and the resulting social cost. Stable states are the Nash equilibria of these games, and we examine their existence and the convergence of sequential best-response dynamics. For symmetric singleton games with arbitrary delay functions we provide a polynomial time algorithm to decide existence for symmetric singleton games. Our algorithm can be extended to compute best and worst Nash equilibria if they exist. For more general congestion games existence becomes NP-hard to decide, even for symmetric network games with quadratic delay functions. Perhaps surprisingly, if all delay functions are linear, there exists a Nash equilibrium and any better-response dynamics converges. In addition, we consider a scenario in which a central altruistic institution can motivate agents to act altruistically. We provide constructive and hardness results for finding the minimum number of altruists to stabilize an optimal congestion profile and more general mechanisms to incentivize agents to adopt favorable behavior.

Keywords

Nash Equilibrium Delay Function Congestion Game Pure Nash Equilibrium Variable Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ackermann, H., Röglin, H., Vöcking, B.: On the impact of combinatorial structure on congestion games. J. ACM, 55(6) (2008)Google Scholar
  2. 2.
    Ackermann, H., Skopalik, A.: On the Complexity of Pure Nash Equilibria in Player-Specific Network Congestion Games. In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp. 419–430. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Babaioff, M., Kleinberg, R., Papadimitriou, C.: Congestion games with malicious players. In: Proc 8th Conference on Electronic Commerce (EC 2007), pp. 103–112 (2007)Google Scholar
  4. 4.
    Chen, P.-A., Kempe, D.: Altruism, selfishness, and spite in traffic routing. In: Proc. 9th Conference on Electronic Commerce (EC 2008), pp. 140–149 (2008)Google Scholar
  5. 5.
    Eshel, I., Samuelson, L., Shaked, A.: Altruists, egoists and hooligans in a local interaction model. American Economic Review 88(1), 157–179 (1998)Google Scholar
  6. 6.
    Fabrikant, A., Papadimitriou, C., Talwar, K.: The complexity of pure Nash equilibria. In: Proc 36th Symposium on Theory of Computing (STOC 2004), pp. 604–612 (2004)Google Scholar
  7. 7.
    Fehr, E., Schmidt, K.: A theory of fairness, competition, and cooperation. The Quarterly Journal of Economics 114, 817–868 (1999)CrossRefzbMATHGoogle Scholar
  8. 8.
    Gairing, M.: Malicious bayesian congestion games. In: Bampis, E., Skutella, M. (eds.) WAOA 2008. LNCS, vol. 5426, pp. 119–132. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Gairing, M., Monien, B., Tiemann, K.: Routing (Un-) splittable flow in games with player-specific linear latency functions. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 501–512. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Gintis, H., Bowles, S., Boyd, R., Fehr, E.: Moral Sentiments and Material Interests: The Foundations of Cooperation in Economic Life. MIT Press, Cambridge (2005)Google Scholar
  11. 11.
    Ieong, S., McGrew, R., Nudelman, E., Shoham, Y., Sun, Q.: Fast and compact: A simple class of congestion games. In: Proc 20th Conf Artificial Intelligence (AAAI 2005), pp. 489–494 (2005)Google Scholar
  12. 12.
    Kaporis, A., Spirakis, P.: Stackelberg games: The price of optimum. In: Encyclopedia of Algorithms. Springer, Heidelberg (2008)Google Scholar
  13. 13.
    Kaporis, A., Spirakis, P.: The price of optimum in Stackelberg games on arbitrary single commodity networks and latency functions. Theoretical Computer Science 410(8–10), 745–755 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Karakostas, G., Viglas, A.: Equilibria for networks with malicious users. Mathematical Programming 110(3), 591–613 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Ledyard, J.: Public goods: A survey of experimental resesarch. In: Kagel, J., Roth, A. (eds.) Handbook of Experimental Economics, pp. 111–194. Princeton University Press, Princeton (1997)Google Scholar
  16. 16.
    Levine, D.: Modeling altruism and spitefulness in experiments. Review of Economic Dynamics 1, 593–622 (1998)CrossRefGoogle Scholar
  17. 17.
    Milchtaich, I.: Congestion games with player-specific payoff functions. Games and Economic Behavior 13(1), 111–124 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Moscibroda, T., Schmid, S., Wattenhofer, R.: When selfish meets evil: Byzantine players in a virus inoculation game. In: Proc. 25th Symposium on Principles of Distributed Computing (PODC 2006), pp. 35–44 (2006)Google Scholar
  19. 19.
    Nisan, N., Tardos, É., Roughgarden, T., Vazirani, V. (eds.): Algorithmic Game Theory. Cambridge University Press, Cambridge (2007)Google Scholar
  20. 20.
    Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. Intl. J. Game Theory 2, 65–67 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Tovey, C.: A simplified NP-complete satisfiability problem. Discrete Applied Mathematics 8, 85–89 (1984)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Martin Hoefer
    • 1
  • Alexander Skopalik
    • 1
  1. 1.Dept. of Computer ScienceRWTH Aachen UniversityGermany

Personalised recommendations