Skip to main content

Stochastic Spectral Formulations for Elliptic Problems

  • Conference paper
  • First Online:
Monte Carlo and Quasi-Monte Carlo Methods 2008

Abstract

We describe new stochastic spectral formulations with very good properties in terms of conditioning. These formulations are built by combining Monte Carlo approximations of the Feynman-Kac formula and standard deterministic approximations on basis functions. We give error bounds on the solutions obtained using these formulations in the case of linear approximations. Some numerical tests are made on an anisotropic diffusion equation using a tensor product Tchebychef polynomial basis and one random point schemes quantized or not.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acebrón, J.A., Busico, M.P., Lanucara, P., Spigler, R.: Domain decomposition solution of elliptic boundary-value problems via Monte Carlo and quasi-Monte Carlo methods. SIAM J. Sci. Comput. 27(2), 440–457 (electronic) (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bally, V., Talay, D.: The law of the Euler scheme for stochastic differential equations. I. Convergence rate of the distribution function. Probab. Theory Related Fields 104(1), 43–60 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  3. Benveniste, A., Métivier, M., Priouret, P.: Adaptive algorithms and stochastic approximations, Applications of Mathematics (New York), vol. 22. Springer-Verlag, Berlin (1990). Translated from the French by Stephen S. Wilson

    MATH  Google Scholar 

  4. Bernardi, C., Maday, Y.: Approximations spectrales de problèmes aux limites elliptiques, Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 10. Springer-Verlag, Paris (1992)

    MATH  Google Scholar 

  5. Deaconu, M., Lejay, A.: A random walk on rectangles algorithm. Methodol. Comput. Appl. Probab. 8(1), 135–151 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Freidlin, M.: Functional integration and partial differential equations, Annals of Mathematics Studies, vol. 109. Princeton University Press, Princeton, NJ (1985)

    MATH  Google Scholar 

  7. Gobet, E.: Weak approximation of killed diffusion using Euler schemes. Stochastic Process. Appl. 87(2), 167–197 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gobet, E., Maire, S.: A spectral Monte Carlo method for the Poisson equation. Monte Carlo Methods Appl. 10(3-4), 275–285 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gobet, E., Maire, S.: Sequential control variates for functionals of Markov processes. SIAM J. Numer. Anal. 43(3), 1256–1275 (electronic) (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gobet, E., Maire, S.: Sequential Monte Carlo domain decomposition for the Poisson equation. In: Proceedings of the 17th IMACS World Congress, Scientific Computation, Applied Mathematics and Simulation (2005)

    Google Scholar 

  11. Hwang, C.O., Mascagni, M., Given, J.A.: A Feynman-Kac path-integral implementation for Poisson’s equation using an h-conditioned Green’s function. Math. Comput. Simulation 62(3-6), 347–355 (2003). 3rd IMACS Seminar on Monte Carlo Methods—MCM 2001 (Salzburg)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lapeyre, B., Pardoux, É., Sentis, R.: Méthodes de Monte-Carlo pour les équations de transport et de diffusion, Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 29. Springer-Verlag, Berlin (1998)

    MATH  Google Scholar 

  13. Lécot, C., El Khettabi, F.: Quasi-Monte Carlo simulation of diffusion. J. Complexity 15(3), 342–359 (1999). Dagstuhl Seminar on Algorithms and Complexity for Continuous Problems (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Maire, S., De Luigi, C.: Quasi-Monte Carlo quadratures for multivariate smooth functions. Appl. Numer. Math. 56(2), 146–162 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Maire, S., Tanré, E.: Some new simulations schemes for the evaluation of Feynman-Kac representations. Monte Carlo Methods Appl. 14(1), 29–51 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Niederreiter, H.: Random number generation and quasi-Monte Carlo methods, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 63. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1992)

    MATH  Google Scholar 

  17. Pagès, G.: A space vector quantization method for numerical integration. J. Computational and Applied Mathematics 89, 1–38 (1998)

    Article  MATH  Google Scholar 

  18. Pagès, G., Printems, J.: Optimal quadratic quantization for numerics: the Gaussian case. Monte Carlo Methods Appl. 9(2), 135–165 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Reutenauer, V., Tanré, E.: Exact simulation of prices and greeks: application to CIR (2008). URL http://hal.inria.fr/inria-00319139/en/

  20. Sabelfeld, K.K.: Monte Carlo methods in boundary value problems. Springer Series in Computational Physics. Springer-Verlag, Berlin (1991). Translated from the Russian

    MATH  Google Scholar 

  21. Shiganov, I.: Refinement of the upper bound of the constant in the central limit theorem. J. Sov. Math. 35, 2545–2550 (1986)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Maire .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Maire, S., Tanré, E. (2009). Stochastic Spectral Formulations for Elliptic Problems. In: L' Ecuyer, P., Owen, A. (eds) Monte Carlo and Quasi-Monte Carlo Methods 2008. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04107-5_33

Download citation

Publish with us

Policies and ethics