Skip to main content

New Analytic Solutions of the Problem of Gas Flow in a Casing with Rotating Disc

  • Conference paper
  • 1093 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5743))

Abstract

We analyse the known approximate analytic solution of the problem of gas flow induced by the disc rotation inside a closed casing. It is shown that this solution is inapplicable because of the negative thickness of the boundary layer in the shaft neighborhood. Several new analytic solutions are obtained for the flow parameters inside the boundary layer of the casing motionless base. To reduce further the discrepancy between the analytic solution and the direct difference solution of three-dimensional Navier–Stokes equations it is proposed to account for the viscous friction force moment on the lateral casing wall. The consideration of this moment has improved considerably the accuracy of the approximate analytic solution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baev, V.K., Bazhaikin, A.N., Frolov, A.D., Takeda, K., Hirano, Y.: Air cleaning from ammonia in agricultural-purpose rooms. Ecology and Industry of Russia 11, 13–16 (2005) (in Russian)

    Google Scholar 

  2. Draper, N.R., Smith, H.: Applied Regression Analysis. John Wiley & Sons, New York (1998)

    Book  MATH  Google Scholar 

  3. Fadlun, E.A., Verzicco, R., Orlandi, P., Mohd-Yusof, J.: Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J. Comput. Phys. 161, 35–60 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fomichev, V.P.: Device for Gas Cleaning. Patent RU No. 2229658 C2, Moscow (2004) (in Russian)

    Google Scholar 

  5. Khaidarov, S.V.: Experimental Investigation of Heat and Mass Exchange in Diametral Disc Fans. Ph.D. Thesis, ITAM SB RAS, Novosibirsk (2000) (in Russian)

    Google Scholar 

  6. Kim, J., Moin, P.: Application of a fractional-step method to incompressible Navier–Stokes equations. J. Comp. Phys. 59, 308–323 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kiselev, S.P., Vorozhtsov, E.V., Fomin, V.M.: Foundations of Fluid Mechanics with Applications: Problem Solving Using Mathematica. Birkhäuser, Basel (1999)

    Book  MATH  Google Scholar 

  8. Lai, M.C., Lin, W.-W., Wang, W.: A fast spectral/difference method without pole conditions for Poisson-type equations in cylindrical and spherical geometries. IMA J. Numer. Anal. 22, 537–548 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Loitsyanskii, L.G.: Boundary Layer Aerodynamics. Gos. izdatelstvo tekhniko-teoreticheskoi literatury, Leningrad, Moscow (1941) (in Russian)

    Google Scholar 

  10. Loitsyanskii, L.G.: Laminar Boundary Layer. In: GIFML, Moscow (1962) (in Russian)

    Google Scholar 

  11. Morozov, V.A., Kirsanova, N.N., Sysoev, A.F.: A complex of algorithms for fast Fourier transform of discrete series. In: Numerical Analysis in FORTRAN, issue 15, pp. 30–51. The Moscow State Univ., Moscow (1976) (in Russian)

    Google Scholar 

  12. Prikhodko, Yu.M.: Investigation of Flow and Heat Exchange in Diametral Disc Fans at Low Reynolds Numbers. Ph.D. Thesis, ITAM SB RAS, Novosibirsk (2008) (in Russian)

    Google Scholar 

  13. Samarskii, A.A., Gulin, A.V.: Numerical Methods. Nauka, Moscow (1989) (in Russian)

    Google Scholar 

  14. Schacht, W., Vorozhtsov, E.V.: Implementation of Roe’s method for numerical solution of three-dimensional fluid flow problems with the aid of computer algebra systems. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) Computer Algebra in Scientific Computing/CASC 2004, pp. 409–422. Techn. Univ. Munich, Munich (2004)

    Google Scholar 

  15. Schultz-Grunow, F.: Der Reibungswiderstand rotierender Scheiben in Gehäusen. Zeitschr. für angew. Math. und Mech. 15, 191–204 (1935)

    Article  MATH  Google Scholar 

  16. Solomakhova, T.S. (ed.): Centrifugal Ventilators. Mashinostroenie, Moscow (1975) (in Russian)

    Google Scholar 

  17. Tesla, N.: Turbine. US Patent No. 1061206, May 6 (1913)

    Google Scholar 

  18. Verzicco, R., Orlandi, P.: A finite-difference scheme for three-dimensional incompressible flows in cylindrical coordinates. J. Comput. Phys. 123, 402–414 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vorozhtsov, E.V. (2009). New Analytic Solutions of the Problem of Gas Flow in a Casing with Rotating Disc. In: Gerdt, V.P., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2009. Lecture Notes in Computer Science, vol 5743. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04103-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04103-7_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04102-0

  • Online ISBN: 978-3-642-04103-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics