Interaction of Wing-Tip Vortices and Jets in the Extended Wake

  • Frank T. Zurheide
  • Guido Huppertz
  • Ehab Fares
  • Matthias Meinke
  • Wolfgang Schröder
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 109)

Abstract

The interaction of wing-tip vortices and jets in the extended wake is experimentally and numerically investigated. The measurements focus on the unsteady wake of a swept-wing half-model equipped with an engine jet and on the analysis of meandering vortex. The aircraft engine is modeled by a cold jet driven by pressurized air. To investigate the influence of the location of the engine jet on the vortex wake, it is mounted in two different positions under the wing model. The spatial development of a vortex wake behind a wing is simulated up to the extended near field. The measurements are used as inflow distribution for a large-eddy simulation (LES) of the wake region. To better capture the motion of the wake vortices a method for hexahedral block structured adaptive mesh refinement with vertex-centered fluxes is introduced. The numerical simulations of the wake are able to predict trajectories and instabilities of the vortex core. The closer the engine is located near the root of the wing, the smaller is the deflection of the vortex and the fewer wave modes of the vortex are excited. The meandering motion of the vortex core is triggered by the engine jet.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aftosmis, M.J.: Upwind method for simulation of viscous flow on adaptively refined meshes. AIAA J. 32(2), 268–277 (1994)CrossRefMATHGoogle Scholar
  2. 2.
    Alkishriwi, N., Meinke, M., Schröder, W.: A large-eddy simulation method for low Mach number flows using preconditioning and multigrid. Comput. & Fluids 35(10), 1126–1136 (2006)CrossRefMATHGoogle Scholar
  3. 3.
    Baker, G.R., Barker, S.J., Bofah, K.K., Saffman, P.G.: Laser anemometer measurements of trailing vortices in water. J. Fluid Mech. 65, 325–336 (1974)CrossRefGoogle Scholar
  4. 4.
    Beninati, M.L., Marshall, J.S.: An experimental study of the effect of free-stream turbulence on a trailing vortex. Experiments in Fluids 38, 244–257 (2005)CrossRefGoogle Scholar
  5. 5.
    Berger, M.J., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. Journal of Computational Physics 53, 484–512 (1984)CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Berger, M.J., Rigoutsos, I.: An algorithm for point clustering and grid generation. IEEE Transactions on Systems, Man and Cybernetics 21(5), 1278–1286 (1991)CrossRefGoogle Scholar
  7. 7.
    Bradshaw, P., Ferris, D.H., Atwell, M.P.: Calculation of boundary layer development using the turbulent energy equation. J. Fluid Mech. 28, 593–616 (1967)CrossRefGoogle Scholar
  8. 8.
    Brunet, S., Garnier, F., Sagaut, P.: Crow instability effects on the exhaust plume mixing and condensation. In: Third International Workshop on Vortex Flows and Related Numerical Methods. European Series in Applied and Industrial Mathematics, vol. 7, pp. 69–79 (1999), http://www.emath.fr/proc/Vol.7/
  9. 9.
    Crouch, J.D.: Instability and transient growth for two trailing-vortex pairs. J. Fluid Mech. 350, 311–330 (1997)CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    Crow, S.C.: Stability theory for a pair of trailing vortices. AIAA J. 8, 2172–2179 (1970)CrossRefGoogle Scholar
  11. 11.
    Deister, F.J.: Selbstorganisierendes hybrid-kartesisches Netzverfahren zur Ber echnung von Strömungen um komplexe Konfigurationen. Ph.D. thesis, University Stuttgart (2002)Google Scholar
  12. 12.
    Devenport, W.J., Rife, M.C., Liapis, S.I., Follin, G.J.: The structure and development of a wing-tip vortex. J. Fluid Mech. 312, 67–106 (1996)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Fabre, D., Jacquin, L.: Stability of a four-vortex aircraft wake model. Phys. Fluids 12(10), 2438–2443 (2000)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Fabre, D., Jacquin, L., Loof, A.: Optimal perturbations in a four-vortex aircraft wake in counter-rotating configuration. J. Fluid Mech. 451, 319–328 (2002)CrossRefMathSciNetMATHGoogle Scholar
  15. 15.
    Fares, E.: Numerical simulation of the interaction of wingtip vortices and engine jets in the near field. Ph.D. thesis, Aerodyn. Inst., RWTH Aachen (2002)Google Scholar
  16. 16.
    Fares, E., Schröder, W.: Analysis of Wakes and Wake-Jet Interaction. Notes on Numerical Fluid Mechanics 84, 57–84 (2003)Google Scholar
  17. 17.
    Fares, E., Schröder, W.: A general one-equation turbulence model for free shear and wall-bound ed flows. Flow, Turbulence and Combustion 73(3-4), 187–215 (2005)CrossRefGoogle Scholar
  18. 18.
    Fureby, C., Grinstein, F.F.: Monotonically integrated large eddy simulation of free shear flows. AIAA J. 37(5), 544–556 (1999)CrossRefGoogle Scholar
  19. 19.
    Gago, C.F., Brunet, S., Garnier, F.: Numerical Investigation of Turbulent Mixing in a Jet/Wake Vortex Interaction. AIAA J. 40(2), 276–284 (2002)CrossRefGoogle Scholar
  20. 20.
    Guo, X., Schröder, W., Meinke, M.: Large-eddy simulations of film cooling flows. Comput. & Fluids 35(6), 587–606 (2006)CrossRefMATHGoogle Scholar
  21. 21.
    Holzäpfel, F., Gerz, T.: Two-dimensional wake vortex physics in the stably stratified atmosphere. Aerosp. Sci. Technol. 5, 261–270 (1999)CrossRefGoogle Scholar
  22. 22.
    Holzäpfel, F., Gerz, T., Baumann, R.: The turbulent decay of trailing vortex pairs in stably stratified environments. Aerosp. Sci. Technol. 5, 95–108 (2001)CrossRefMATHGoogle Scholar
  23. 23.
    Holzäpfel, F., Hofbauer, T., Darracq, D., Moet, H., Garnier, F., Gago, C.F.: Wake vortex evolution and decay mechanisms in the atmosphere. In: Proceedings of 3rd ONERA–DLR Aerospace Symposium, Paris, France, p. 10 (2001)Google Scholar
  24. 24.
    Holzäpfel, F., Hofbauer, T., Darracq, D., Moet, H., Garnier, F., Gago, C.F.: Analysis of wake vortex decay mechanisms in the atmosphere. Aerosp. Sci. Technol. 7, 263–275 (2003)CrossRefMATHGoogle Scholar
  25. 25.
    Huppertz, G., Fares, E., Abstiens, R., Schröder, W.: Investigation of engine jet/wing-tip vortex interference. Aerosp. Sci. Technol. 8(3), 175–183 (2004)CrossRefGoogle Scholar
  26. 26.
    Jacquin, L., Fabre, D., Sipp, D., Theofilis, V., Vollmers, H.: Instability and unsteadiness of aircraft wake vortices. Aerosp. Sci. Technol. 7, 577–593 (2003)CrossRefGoogle Scholar
  27. 27.
    Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)CrossRefMathSciNetMATHGoogle Scholar
  28. 28.
    Keyser, J.D., Roose, D.: A software tool for load balanced adaptive multiple grids on distributed memory computers. In: Proceedings of The Sixth Distributed Memory Computing Conference, 1991, pp. 122–128 (1991)Google Scholar
  29. 29.
    Labbe, O., Maglaras, E., Garnier, F.: Large-eddy simulation of a turbulent jet and wake vortex interaction. Comput. & Fluids 36(4), 772–785 (2007)CrossRefMATHGoogle Scholar
  30. 30.
    Laporte, F., Corjon, A.: Direct numerical simulations of the elliptic instability of a vortex pair. Phys. Fluids 12(5), 1016–1031 (2000)CrossRefMathSciNetMATHGoogle Scholar
  31. 31.
    Laporte, F., Leweke, T.: Elliptic Instability of Counter-Rotating Vortices: Experiment and Direct Numerical Simulation. AIAA J. 40(12), 2483–2494 (2002)CrossRefGoogle Scholar
  32. 32.
    Lapworth, B.L.: Three-dimensional mesh embedding for the navier-stokes equations using upwind control volumes. International Journal for Numerical Methods in Fluids 17, 195–220 (1993)CrossRefMATHGoogle Scholar
  33. 33.
    Le Dizès, S., Laporte, F.: Theoretical predictions for the elliptical instability in a two-vortex flow. J. Fluid Mech. 471, 169–201 (2002)CrossRefMathSciNetMATHGoogle Scholar
  34. 34.
    Leweke, T., Williamson, C.H.K.: Cooperative elliptic instability of a vortex pair. J. Fluid Mech. 360, 85–119 (1998)CrossRefMathSciNetMATHGoogle Scholar
  35. 35.
    Loiseleux, T., Chomaz, J.M., Huerre, P.: The effect of swirl on jets and wakes: Linear instability of the rankine vortex with axial flow. Physics of Fluids 10(5), 1120–1134 (1998)CrossRefMathSciNetMATHGoogle Scholar
  36. 36.
    Lu, G., Lele, S.K.: Inviscid instability of compressible swirling mixing layers. Physics of Fluids 11(2), 450–461 (1999)CrossRefMathSciNetMATHGoogle Scholar
  37. 37.
    Margaris, P., Marles, D., Gursul, I.: Experiments on jet/vortex interaction. Experiments in Fluids 44, 261–278 (2008)CrossRefGoogle Scholar
  38. 38.
    Mavriplis, D.J.: Adaptive meshing techniques for viscous flow calculations on mixed element unstructured meshes. International Journal for Numerical Methods in Fluids 34, 93–112 (2000)CrossRefMATHGoogle Scholar
  39. 39.
    McDill, J.M., Goldak, J.A., Oddy, A.S., Bibby, M.J.: Isoparametric quadrilaterals and hexahedrons for mesh-grading algorithms. Communications in Applied Numerical Methods 3(2), 155–163 (1987)CrossRefMATHGoogle Scholar
  40. 40.
    Meinke, M., Schröder, W., Krause, E., Rister, T.: A comparison of second- and sixth-order methods for large-eddy simulations. Comput. & Fluids 31, 695–718 (2002)CrossRefMATHGoogle Scholar
  41. 41.
    Meunier, P., Dizes, S.L., Leweke, T.: Physics of vortex merging. C. R. Physique 6, 431–450 (2005)CrossRefGoogle Scholar
  42. 42.
    Meunier, P., Leweke, T.: Three-dimensional instability during vortex merging. Phys. Fluids 13(10), 2747–2750 (2001)CrossRefGoogle Scholar
  43. 43.
    Meunier, P., Leweke, T.: Elliptic instability of a co-rotating vortex pair. J. Fluid Mech. 533, 124–159 (2005)CrossRefMathSciNetGoogle Scholar
  44. 44.
    Miake-Lye, R., Martinez-Sanchez, M., Brown, R.C., Kolb, C.E.: Plume and wake dynamics, mixing, and chemistry behind a high speed civil transport aircraft. J. Aircraft 30(4), 467–479 (1993)CrossRefGoogle Scholar
  45. 45.
    Moir, I.R.M.: Measurements on a two-dimensional aerofoil with high-lift devices. AGARD AR-303 2, 58–59 (1994)Google Scholar
  46. 46.
    Nagano, Y., Pei, C., Hattori, H.: A new low-Reynolds-number one-equation model of turbulence. Flow, Turbulence and Combustion 63, 135–151 (1999)CrossRefGoogle Scholar
  47. 47.
    Paoli, R., Laporte, F., Cuenot, B., Poinsot, T.: Dynamics and mixing in jet/vortex interactions. Phys. Fluids 15(7), 1843–1860 (2003), doi:10.1063/1.1575232CrossRefMathSciNetGoogle Scholar
  48. 48.
    Raffel, M., Willert, C.E., Wereley, S.T., Kompenhans, J.: Particle Image Velocimetry: A Practical Guide, 2nd edn. Springer, Heidelberg (2007)Google Scholar
  49. 49.
    Rantakokko, J.: Partitioning strategies for structured multiblock grids. Parallel Comput. 26(12), 1661–1680 (2000)CrossRefMathSciNetMATHGoogle Scholar
  50. 50.
    Rütten, F., Schröder, W., Meinke, M.: Large-eddy simulation of low frequency oscillations of the Dean vortices in turbulent pipe bend flows. Phys. Fluids 17(3), 035, 107 (2005), doi:10.1063/1.1852573CrossRefGoogle Scholar
  51. 51.
    Schlichting, H., Truckenbrodt, E.A.: Aerodynamik des Flugzeuges, vol. 2. Springer, Heidelberg (2001)Google Scholar
  52. 52.
    Sipp, D.: Weakly nonlinear saturation of short-wave instabilities in a strained lamb-oseen vortex. Phys. Fluids 12(7), 1715–1729 (2000)CrossRefMathSciNetGoogle Scholar
  53. 53.
    Spalart, P.R.: Airplane trailing vortices. Annual Review of Fluid Mechanics 30(1), 107–138 (1998)CrossRefMathSciNetGoogle Scholar
  54. 54.
    Spalart, P.R., Allmaras, S.R.: A One-Equation Turbulence Model for Arodynamic Flows. Paper 92-0439, AIAA (1992); 30th Aerospaace Sciences Meeting & Exhibit, January 6-9, RenoGoogle Scholar
  55. 55.
    Steensland, J.: Adaptive Mesh Refinement on Structured Grids. An Overview (1998), http://user.it.uu.se/~johans/research/overview.ps
  56. 56.
    Stumpf, E.: Untersuchung von 4-Wirbelsystemen zur Minimierung von Wirbelschleppen und ihre Realisierung an Transportflugzeugen. Ph.D. thesis, Aerodyn. Inst., RWTH Aachen (2003)Google Scholar
  57. 57.
    Stumpf, E., Wild, J., Dafa’Alla, A.A., Meese, E.A.: Numerical Simulations of the Wake Vortex Near Field of High-Lift Configurations. In: Neittaanmäki, P., Rossi, T., Korotov, S., Oñate, E., Périaux, J., Knörzer, D. (eds.) European Congress on Computational Methods in Applied Sciences an Engineering ECCOMAS 2004, Jyväskylä (2004)Google Scholar
  58. 58.
    Tóth, G., Roe, P.L.: Divergence- and curl-preserving prolongation and restriction formulas. J. Comput. Phys. 180(2), 736–750 (2002)CrossRefMathSciNetMATHGoogle Scholar
  59. 59.
    Townsend, A.A.: The Structure of Turbulent Shear Flow, 2nd edn. Cambridge University Press, Cambridge (1976)MATHGoogle Scholar
  60. 60.
    Waleffe, F.: On the three-dimensional instability of strained vortices. Phys. Fluids 2(1), 76–80 (1990)CrossRefMathSciNetMATHGoogle Scholar
  61. 61.
    Watts, J., Taylor, S.: A Practical Approach to Dynamic Load Balancing. IEEE Transactions on Parallel and Distributed Systems 09(3), 235–248 (1998)CrossRefGoogle Scholar
  62. 62.
    Wilcox, D.C.: Reasessment of the scale-determining equation for advanced turbulence models. AIAA Journal 26, 1299–1310 (1988)CrossRefMathSciNetMATHGoogle Scholar
  63. 63.
    Wilcox, D.C., Traci, R.M.: A complete model of turbulence. Tech. Rep. AIAA Paper No. 76-351, American Institute of Aeronautics and Astronautics (1976)Google Scholar
  64. 64.
    Yin, X.Y., Sun, D.J., Wei, M.J., Wu, J.Z.: Absolute and convective instability character of slender viscous vortices. Phys. Fluids 12, 1062–1072 (2000), doi:10.1063/1.870361CrossRefMathSciNetMATHGoogle Scholar
  65. 65.
    Zurheide, F., Schröder, W.: Numerical Analysis of Wing Vortices. In: Tropea, C., Jakirlic, S., Heinemann, H.J., Henke, R., Hönlinger, H. (eds.) New Results in Numerical and Experimental Fluid Mechanics VI. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 96, pp. 17–25. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Frank T. Zurheide
    • 1
  • Guido Huppertz
    • 1
  • Ehab Fares
    • 1
  • Matthias Meinke
    • 1
  • Wolfgang Schröder
    • 1
  1. 1.Institute of AerodynamicsRWTH Aachen UniversityAachenGermany

Personalised recommendations