Skip to main content

An Adaptive Implicit Finite Volume Scheme for Compressible Turbulent Flows about Elastic Configurations

  • Conference paper
Summary of Flow Modulation and Fluid-Structure Interaction Findings

Abstract

In this paper the development of the new adaptive solver QUADFLOW is described. It is based on an integral concept and consists of a flow solver, a grid generation tool using parametric mapping based on B-splines, and local grid adaptation based on multiscale analysis. QUADFLOW has been designed to obtain a solution method for multidisciplinary problems in the field of aerospace engineering. The most important applications are the simulation of high-lift configurations and elastic wings in cruise configuration. A partitioned field approach is used for the solution to aeroelastic problems. In this article the finite volume solver and its inclusion into an aeroelastic solver are outlined. The results of the validation study and a new matrix-free Newton-Krylov method, offering potential to accelerate convergence, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AGARD-AR-211. Test cases for inviscid flow field methods (1985)

    Google Scholar 

  2. Arnal, D., Casalis, G.: Laminar-turbulent transition prediction in three-dimensional flows. Progress in Aerospace Sciences 36, 173–191 (2000)

    Article  Google Scholar 

  3. Balaji, R., Bramkamp, F., Hesse, M., Ballmann, J.: Effect of Flap and Slat Riggings on 2-D High-Lift Aerodynamics. Journal of Aircraft 43(5), 1259–1271 (2006)

    Article  Google Scholar 

  4. Balay, S., Buschelman, K., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Smith, B., Zhang, H.: PETSc Web page (2001), http://www.mcs.anl.gov/petsc

  5. Ballmann, J.: Flow Modulation and Fluid-Structure-Interaction at Airplane Wings. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 84. Springer, Berlin (2003)

    MATH  Google Scholar 

  6. Batten, P., Leschziner, M.A., Goldberg, U.C.: Average-State Jacobians and Implicit Methods for Compressible Viscous and Turbulent Flows. Journal for Computational Physics 137(1), 38–78 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Boucke, A.: Kopplungswerkzeuge für aeroelastische Simulationen. PhD thesis, RWTH Aachen University (2003)

    Google Scholar 

  8. Bramkamp, F.D.: Unstructured h-Adaptive Finite-Volume Schemes for Compressible Viscous Fluid Flow. PhD thesis, RWTH Aachen University (2003)

    Google Scholar 

  9. Bramkamp, F.D., Bücker, H.M., Rasch, A.: Using Exact Jacobians in an Implicit Newton-Krylov Method. Computers & Fluids 35(10) (2006)

    Google Scholar 

  10. Bramkamp, F.D., Lamby, P., Müller, S.: An adaptive multiscale finite volume solver for unsteady and steady state flow computations. Journal for Computational Physics 197(2), 460–490 (2004)

    Article  MATH  Google Scholar 

  11. Braun, C.: Ein modulares Verfahren für die numerische aeroelastische Analyse von Luftfahrzeugen. PhD thesis, RWTH Aachen University (2007)

    Google Scholar 

  12. Cliquet, J., Houdeville, R., Arnal, D.: Application of Laminar-Turbulent Transition Criteria in Navier-Stokes Computations. AIAA Journal 46(5), 1182–1190 (2008)

    Article  Google Scholar 

  13. Cook, P.H., McDonald, M.A., Firmin, M.C.P.: Aerofoil RAE 2822 - Pressure Distributions and Boundary Layer and Wake Measurements. AGARD-AR-138 (1979)

    Google Scholar 

  14. Deck, S.: Zonal-Detached-Eddy Simulation of the Flow Around a High-Lift Configuration. AIAA Journal 43(11), 2372–2384 (2005)

    Article  Google Scholar 

  15. Edwards, J., Liou, M.S.: Low-Diffusion Flux-Splitting Methods for Flows at All Speeds. AIAA Journal 36(9), 1610–1617 (1998)

    Article  Google Scholar 

  16. Gaisbauer, U., Weigand, B., Reinartz, B.: Research Training Group GRK 1095/1: Aero-Thermodynamic Design of a Scramjet Propulsion Sysytem. In: Proceedings of 18th ISABE Conference (2007)

    Google Scholar 

  17. Grotowsky, I.M.G., Ballmann, J.: Efficient time integration of Navier-Stokes equations. Computers & Fluids 28, 243–263 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hänel, D., Schwane, R.: An Implicit Flux–Vector Splitting Scheme for the Computation of Viscous Hypersonic Flow, AIAA Paper 1989–0274 (1989)

    Google Scholar 

  19. Hellsten, A.: New Advanced k-ω Turbulence Model for High-Lift Aerodynamics. AIAA Journal 43(9), 1857–1969 (2005)

    Article  Google Scholar 

  20. Hesse, M.: Entwicklung eines automatischen Gitterdeformationsalgorithmus zur Strömungsberechnung um komplexe Konfigurationen auf Hexaeder-Netzen. PhD thesis, RWTH Aachen University (2006)

    Google Scholar 

  21. Knoll, D.A., Keyes, D.E.: Jacobian-free Newton-Krylov methods: a survey of approaches and applications. Journal for Computational Physics 193(2), 357–397 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Ballmann, J., Dafnis, A., Braun, C., Korsch, H., Reimerdes, H.G., Olivier, H.: High Reynolds Number Aerostructural Dynamics Experiments in the European Transonic Windtunnel (ETW). In: 25th International Congress of the Aeronautical Sciences (2006)

    Google Scholar 

  23. Krause, M., Behr, M.: Modelling of Tranition Effects in Hypersonic Intake Flows Using a Correlation-Based Intermittency Model. In: 15th AIAA International Space Planes and Hypersonic Systems and Technologies (2008)

    Google Scholar 

  24. Kroll, N., Fassbender, J.K.: MEGAFLOW — Numerical flow simulation for aircraft design. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 89. Springer, Heidelberg (2005)

    Book  MATH  Google Scholar 

  25. Kroll, N., Schwamborn, D., Becker, K., Rieger, H., Thiele, F.: MEGADESIGN and MegaOpt — German Initiatives for Aerodynamic Simulation and Optimization in Aircraft Design. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 107. Springer, Heidelberg (2009)

    Book  MATH  Google Scholar 

  26. Menter, F.R., Langtry, R.B., Likki, S.R., Suzen, Y.B., Huang, P.G., Völker, S.: A Correlation-Based Transition Model Using Local Variables Part I - Model Formulation. In: Proceedings of ASME Turbo Expo 2004, Power for Land, Sea and Air (2004)

    Google Scholar 

  27. Menter, F.R.: Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA Journal 32(8), 1598–1604 (1994)

    Article  Google Scholar 

  28. Moens, F., Perraud, J., Krumbein, A., Toulorge, T., Iannelli, P., Eliasson, P., Hanifi, A.: Transition Prediction and Impact on a Three-Dimensional High-Lift-Wing Configuration. Journal of Aircraft 45(5), 1751–1766 (2008)

    Article  Google Scholar 

  29. Moir, I.R.M.: Measurements on a Two-Dimensional Aerofoil with High Lift Devices. AGARD-AR-303, vol. 1 and 2 (1994)

    Google Scholar 

  30. Rall, L.B.: Automatic Differentiation: Techniques and Applications. LNCS, vol. 120. Springer, Heidelberg (1981)

    MATH  Google Scholar 

  31. Reimer, L., Braun, C., Ballmann, J.: Aanalysis of the Static and Dynamic Aero-Structural Response of an Elastic Swept Wing Model by Direct Aeroelastic Simulation. In: Proceedings of the 25th International Congress of the Aeronautical Sciences, ICAS 2006, Hamburg, Germany (2006)

    Google Scholar 

  32. Rumsey, C.L., Gatski, T.B., Ying, S.X., Bertelrud, A.: Prediction of High-Lift Flows using Turbulent Closure Models. Technical Report: NASA-AIAA 97-2260 (1997)

    Google Scholar 

  33. Rung, T., Thiele, F.: Computational modelling of complex boundary layer flows. In: Proc. 9th Intern. Symposium on Transport Phenomena in Thermal-Fluid Engineering, Singapore, pp. 321–326 (1996)

    Google Scholar 

  34. Schieffer, G., Ballmann, J., Behr, M.: Validation of advanced turbulence models in QUADFLOW. Turbulence, Heat and Mass Transfer 6, Begell House Inc. (2009)

    Google Scholar 

  35. Schmitt, V., Charpin, F.: Pressure Distributions on the ONERA M6 Wing at Transonic Mach Numbers. AGARD-AR-138 (1979)

    Google Scholar 

  36. Schubauer, G.B., Klebanoff, P.S.: Contributions on the Mechanics of Boundary Layer Transition. NACA TN 3489 (1955)

    Google Scholar 

  37. Smith, A.M.O., Gamberoni, N.: Transition, pressure gradient and stability theory. Report ES 26388, Douglas Aircraft Co., El Segundo, California (1956)

    Google Scholar 

  38. Spalart, P.R., Allmaras, S.R.: A One-equation turbulence Model for Aerodynamic Flows. AIAA-Paper 92-0439 (1992)

    Google Scholar 

  39. Spalart, P.R., Jou, W.H., Strelets, M., Allmaras, S.R.: Comments on the Feasability of LES for Wings and on a Hybrid RANS/LES Approach. In: 1st AFSOR Int. Conf. on DNS/LES. Greyden Press, Columbus (1997)

    Google Scholar 

  40. van Ingen, J.L.: A suggested semi-empirical method for the calculation of boundary layer transition region. Report UTH-74, Univ. of Techn., Dept. of Aero. Eng., Delft (1956)

    Google Scholar 

  41. Venkatakrishnan, V.: Convergence to Steady State Solutions of the Euler Equations on Unstructured Grids with Limiters. Journal for Computational Physics 118(1), 120–130 (1995)

    Article  MATH  Google Scholar 

  42. Wada, Y., Liou, M.S.: A Flux Splitting Scheme with High-Resolution and Robustness for Discontinuities. AIAA Paper 94-0083 (1994)

    Google Scholar 

  43. Wallin, S., Johansson, A.: An Explicit Algebraic Reynolds Stress Model for Incompressible and Compressible Turbulent Flows. Journal of Fluid Mechanics 403, 89–132 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  44. Wilcox, D.C.: Turbulence Modeling for CFD. DCW Industries, Inc., La Cañada (1993)

    Google Scholar 

  45. Ying, S.X., Spaid, F.W., McGinley, C.B., Rumsey, C.L.: Investigation of Confluent Boundary Layers in High-Lift Flows. AIAA Journal 36(3), 550–562 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schieffer, G., Ray, S., Bramkamp, F.D., Behr, M., Ballmann, J. (2010). An Adaptive Implicit Finite Volume Scheme for Compressible Turbulent Flows about Elastic Configurations. In: Schröder, W. (eds) Summary of Flow Modulation and Fluid-Structure Interaction Findings. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 109. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04088-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04088-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04087-0

  • Online ISBN: 978-3-642-04088-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics