Skip to main content

Iterative Solvers for Discretized Stationary Euler Equations

  • Conference paper
Summary of Flow Modulation and Fluid-Structure Interaction Findings

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 109))

  • 1399 Accesses

Abstract

In this paper we treat subjects which are relevant in the context of iterative methods in implicit time integration for compressible flow simulations. We present a novel renumbering technique, some strategies for choosing the time step in the implicit time integration, and a novel implementation of a matrix-free evaluation for matrix-vector products. For the linearized compressible Euler equations, we present various comparative studies within the QUADFLOW package concerning preconditioning techniques, ordering methods, time stepping strategies, and different implementations of the matrix-vector product. The main goal is to improve efficiency and robustness of the iterative method used in the flow solver.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ajmani, K., Ng, W.-F., Liou, M.: Preconditioned conjugate gradient methods for the Navier-Stokes equations. Journal of Computational Physics 110(1), 68–81 (1994)

    Article  MATH  Google Scholar 

  2. Balay, S., Gropp, W.D., McInnes, L.C., Smith, B.F.: Efficient management of parallelism in object oriented numerical software libraries. In: Arge, E., Bruaset, A.M., Langtangen, H.P. (eds.) Modern Software Tools in Scientific Computing, pp. 163–202. Birkhäuser Press, Basel (1997)

    Google Scholar 

  3. Barett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J.M., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., van der Vorst, H.A.: Templates for the Solution of Linear Sparse Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia (1994)

    Google Scholar 

  4. Benzi, M., Joubert, W., Mateescu, G.: Numerical experiments with parallel orderings for ILU preconditioners. Electronic Transactions on Numerical Analysis 8, 88–114 (1998)

    MathSciNet  Google Scholar 

  5. Bey, J., Wittum, G.: Downwind numbering: robust multigrid for convection-diffusion problems. Applied Numerical Mathematics 23(1), 177–192 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Blanco, M., Zingg, D.W.: Fast Newton-Krylov method for unstructured grids. AIAA Journal 36(4), 607–612 (1998)

    Article  Google Scholar 

  7. Bramkamp, F.D.: Unstructured h-Adaptive Finite-Volume Schemes for Compressible Viscous Fluid Flow. PhD thesis, RWTH Aachen University (2003)

    Google Scholar 

  8. Bramkamp, F.D., Lamby, P., Müller, S.: An adaptive multiscale finite volume solver for unsteady and steady state flow computations. Journal of Computational Physics 197(2), 460–490 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bramkamp, F.D., Pollul, B., Rasch, A., Schieffer, G.: Matrix-free second-order methods in implicit time integration for compressible flows using automatic differentiation. Technical Report 287, IGPM, RWTH Aachen University (2008)

    Google Scholar 

  10. Bücker, H.M., Pollul, B., Rasch, A.: On CFL evolution strategies for implicit upwind methods in linearized Euler equations. International Journal for Numerical Methods in Fluids 59(1), 1–18 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cai, X.-C., Keyes, D.E.: Nonlinearly preconditioned inexact Newton algorithms. SIAM Journal on Scientific Computing 24(1), 183–200 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cai, X.-C., Keyes, D.E., Young, D.P.: A nonlinear additive Schwarz preconditioned inexact Newton method for shocked duct flows. In: Debit, N., Garbey, M., Hoppe, R., Periaux, J., Keyes, D., Kuznetsov, Y. (eds.) Proceedings of the 13th International Conference on Domain Decomposition Methods, Lyon, France, pp. 345–352 (2001)

    Google Scholar 

  13. Cai, X.-C., Sarkis, M.: A restricted additive Schwarz preconditioner for general sparse linear systems. SIAM Journal on Scientific Computing 21(2), 792–797 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Chan, T.F., Jackson, K.R.: Nonlinearly preconditioned Krylov subspace methods for discrete Newton algorithms. SIAM Journal on Scientific Computing 5(3), 533–542 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  15. Chisholm, T., Zingg, D.W.: A fully coupled Newton-Krylov solver for turbulent aerodynamic flows. In: ICAS 2002 Congress, Toronto, ON, Canada, Paper 333 (2002)

    Google Scholar 

  16. Courant, R., Friedrichs, K.O.: Supersonic Flow and Shock Waves. Applied Mathematical Sciences, vol. 21. Springer, Berlin (1999) (reprint from 1948)

    Google Scholar 

  17. Cuthill, E., McKee, J.: Reducing the bandwidth of sparse symmetric matrices. In: Proceedings of the 24th national conference, New York, NY, USA, pp. 157–172 (1969)

    Google Scholar 

  18. D’Azevedo, E.F., Forsyth, P.A., Tang, W.-P.: Ordering methods for preconditioned conjugate gradient methods applied to unstructured grid problems. SIAM Journal on Matrix Analysis and Applications 13(3), 944–961 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gropp, W.D., Keyes, D.E., McInnes, L.C., Tidriri, M.D.: Globalized Newton-Krylov-Schwarz algorithms and software for parallel implicit CFD. International Journal of High Performance Computing Applications 14(2), 102–136 (2000)

    Article  Google Scholar 

  20. Grote, M.J., Huckle, T.: Parallel preconditioning with sparse approximate inverses. SIAM Journal on Scientific Computing 18(3), 838–853 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hackbusch, W.: On the feedback vertex set for a planar graph. Computing 58, 129–155 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  22. Hovland, P.D., McInnes, L.C.: Parallel simulation of compressible flow using automatic differentiation and PETSc. Parallel Computing 27(4), 503–519 (2001)

    Article  MATH  Google Scholar 

  23. Hwang, F.-N., Cai, X.-C.: A parallel nonlinear additive Schwarz preconditioned inexact Newton algorithm for incompressible Navier-Stokes equations. Journal of Computational Physics 204(2), 666–691 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Issman, E., Degrez, G., Deconinck, H.: Implicit upwind residual-distribution Euler and Navier-Stokes solver on unstructured meshes. AIAA Journal 34(10), 2021–2028 (1996)

    Article  MATH  Google Scholar 

  25. Jones, D.J.: Reference test cases and contributors. In: AGARD–AR–211: Test Cases for Inviscid Flow Field Methods. Advisory Group for Aerospace Research & Development. Neuilly-sur-Seine, France (1986)

    Google Scholar 

  26. Kelley, C.T., Keyes, D.E.: Convergence analysis of pseudo-transient continuation. SIAM Journal on Numerical Analysis 35(2), 508–523 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  27. Knoll, D.A., Keyes, D.E.: Jacobian-free Newton-Krylov methods: a survey of approaches and applications. Journal of Computational Physics 193(2), 357–397 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  28. Luo, H., Sharov, D., Baum, J.D., Löhner, R.: Parallel unstructured grid GMRES+LU-SGS method for turbulent flows. AIAA Paper 2003–0273 (2003)

    Google Scholar 

  29. Manzano, L., Lassaline, J.V., Wong, P., Zingg, D.W.: A Newton-Krylov algorithm for the Euler equations using unstructured grids. AIAA Paper 2003–0274 (2003)

    Google Scholar 

  30. Mulder, W.A., van Leer, B.: Experiments with implicit upwind methods for the Euler equations. Journal of Computational Physics 59(2), 232–246 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  31. Nejat, A., Ollivier-Gooch, C.: Effect of discretization order on preconditioning and convergence of a high-order unstructured Newton-GMRES solver for the Euler equations. Journal of Computational Physics 227(4), 2366–2386 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  32. Pollul, B.: Preconditioners for linearized discrete compressible Euler equations. In: Wesseling, P., Oñate, E., Périaux, J. (eds.) Proceedings of the European Conference on Computational Fluid Dynamics ECCOMAS, Egmond aan Zee, The Netherlands (2006)

    Google Scholar 

  33. Pollul, B., Reusken, A.: Numbering techniques for preconditioners in iterative solvers for compressible flows. International Journal for Numerical Methods in Fluids 55(3), 241–261 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  34. Pueyo, A., Zingg, D.W.: Efficient Newton-Krylov solver for aerodynamic computations. AIAA Journal 36(11), 1991–1997 (1998)

    Article  Google Scholar 

  35. Saad, Y.: Preconditioned Krylov subspace methods for CFD applications. In: Habashi, W. (ed.) Solution techniques for Large-Scale CFD-Problems, pp. 139–158. John Wiley & Sons, New York (1995)

    Google Scholar 

  36. Saad, Y.: Iterative methods for sparse linear systems, 2nd edn. SIAM, Philadelphia (2003)

    MATH  Google Scholar 

  37. Stüben, K.: An introduction in algebraic multigrid. In: Trottenberg, U., Osterlee, C., Schüller, A. (eds.) Multigrid, pp. 413–532. Academic Press, London (2001)

    Google Scholar 

  38. Turek, S.: On ordering strategies in a multigrid algorithm. In: Hackbusch, W., Wittum, G. (eds.) Proc. 8th GAMM-Seminar, Kiel. Notes on Numerical Fluid Mechanics, vol. 41. Vieweg, Braunschweig (1997)

    Google Scholar 

  39. Vanderstraeten, D., Csík, A., Rose, D.: An expert-system to control the CFL number of implicit upwind methods. Technical Report TM 304, Universiteit Leuven, Belgium (2000)

    Google Scholar 

  40. Wong, P., Zingg, D.W.: Three-dimensional aerodynamic computations on unstructured grids using a Newton-Krylov approach. Computers & Fluids 37(2), 107–120 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pollul, B., Reusken, A. (2010). Iterative Solvers for Discretized Stationary Euler Equations. In: Schröder, W. (eds) Summary of Flow Modulation and Fluid-Structure Interaction Findings. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 109. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04088-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04088-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04087-0

  • Online ISBN: 978-3-642-04088-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics