Skip to main content

Algebra for Infinite Forests with an Application to the Temporal Logic EF

  • Conference paper
CONCUR 2009 - Concurrency Theory (CONCUR 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5710))

Included in the following conference series:

Abstract

We define an extension of forest algebra for ω-forests. We show how the standard algebraic notions (free object, syntactic algebra, morphisms, etc.) extend to the infinite case. To prove its usefulness, we use the framework to get an effective characterization of the ω-forest languages that are definable in the temporal logic that uses the operator EF (exists finally).

Work partially funded by the Polish government grant no. N206 008 32/0810.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Benedikt, M., Segoufin, L.: Regular tree languages definable in FO. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 327–339. Springer, Heidelberg (2005); A revised version, correcting an error from the conference paper, www.lsv.ens-cachan.fr/~segoufin/Papers/

    Chapter  Google Scholar 

  2. Blumensath, A.: Recognisability for algebras of infinite trees (unpublished, 2009)

    Google Scholar 

  3. Bojańczyk, M.: Two-way unary temporal logic over trees. In: Logic in Computer Science, pp. 121–130 (2007)

    Google Scholar 

  4. Bojańczyk, M.: Effective characterizations of tree logics. In: PODS, pp. 53–66 (2008)

    Google Scholar 

  5. Bojańczyk, M., Segoufin, L.: Tree languages defined in first-order logic with one quantifier alternation. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 233–245. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Bojańczyk, M., Segoufin, L., Straubing, H.: Piecewise testable tree languages. In: Logic in Computer Science, pp. 442–451 (2008)

    Google Scholar 

  7. Bojańczyk, M., Walukiewicz, I.: Characterizing EF and EX tree logics. Theoretical Computer Science 358(2-3), 255–273 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bojańczyk, M., Walukiewicz, I.: Forest algebras. In: Automata and Logic: History and Perspectives, pp. 107–132. Amsterdam University Press (2007)

    Google Scholar 

  9. Eilenberg, S.: Automata, Languages and Machines, vol. B. Academic Press, New York (1976)

    MATH  Google Scholar 

  10. Perrin, D., Pin, J.-É.: Infinite Words. Elsevier, Amsterdam (2004)

    MATH  Google Scholar 

  11. Wilke, T.: An algebraic theory for languages of finite and infinite words. Inf. J. Alg. Comput. 3, 447–489 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bojańczyk, M., Idziaszek, T. (2009). Algebra for Infinite Forests with an Application to the Temporal Logic EF. In: Bravetti, M., Zavattaro, G. (eds) CONCUR 2009 - Concurrency Theory. CONCUR 2009. Lecture Notes in Computer Science, vol 5710. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04081-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04081-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04080-1

  • Online ISBN: 978-3-642-04081-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics