Skip to main content

Multiobjective Permutation Flow Shop Scheduling Using a Memetic Algorithm with an NEH-Based Local Search

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 5754)

Abstract

In this paper we address scheduling of the permutation flow shop with minimization of makespan and total flow time as the objectives. We propose a memetic algorithm (MA) to search for the set of non-dominated solutions (the Pareto optimal solutions). The proposed MA adopts the permutation-based encoding and the fitness assignment mechanism of NSGA-II. The main feature is the introduction of an NEH-based neighborhood function into the local search procedure. We also adjust the size of the neighborhood dynamically during the execution of the MA to strike a balance between exploration and exploitation. Forty public benchmark problem instances are used to compare the performance of our MA with that of twenty-seven existing algorithms. Our MA provides close performance for small-scale instances and much better performance for large-scale instances. It also updates more than 90% of the net set of non-dominated solutions for the large-scale instances.

Keywords

  • Flow shop
  • multiobjective
  • makespan
  • total flow time
  • memetic algorithm
  • evolutionary algorithm

This is a preview of subscription content, access via your institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (Finland)
  • DOI: 10.1007/978-3-642-04070-2_87
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
EUR   149.79
Price includes VAT (Finland)
  • ISBN: 978-3-642-04070-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
EUR   197.99
Price includes VAT (Finland)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Framinan, J.M., Leisten, R., Ruiz-Usano, R.: Comparison of Heuristics for Flowtime Minimization in Permutation Flowshops. Computers & Operations Research 32, 1237–1254 (2005)

    MATH  Google Scholar 

  2. Ruiz, R., Maroto, C.: A Comprehensive Review and Evaluation of Permutation Flowshop Heuristics. European Journal of Operational Research 165, 479–494 (2005)

    CrossRef  MATH  MathSciNet  Google Scholar 

  3. Deb, K.: Multiobjective Optimization Using Evolutionary Algorithms. Wiley, U.K. (2001)

    Google Scholar 

  4. Coello, C.A.C., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, Dordrecht (2007)

    MATH  Google Scholar 

  5. Minella, G., Ruiz, R., Ciavotta, M.: A Review and Evaluation of Multi-objective Algorithms for the Flowshop Scheduling Problem. INFORMS Journal of Computing 20, 451–471 (2008)

    CrossRef  MathSciNet  Google Scholar 

  6. Lei, D.: Multi-objective Production Scheduling: A Survey. International Journal of Advanced Manufacturing Technology (in press)

    Google Scholar 

  7. Rajendran, C.: Heuristics for Scheduling in Flowshop with Multiple Objectives. European Journal of Operational Research 83, 540–555 (1995)

    CrossRef  Google Scholar 

  8. Neppalli, V.R., Chen, C.L., Gupta, J.N.D.: Genetic Algorithms for the Two-stage Bicriteria Flowshop Problem. European Journal of Operational Research 95, 356–373 (1996)

    CrossRef  MATH  Google Scholar 

  9. Sridhar, J., Rajendran, C.: Scheduling in Flowshop and Cellular Manufacturing Systems with Multiple Objectives—A Genetic Algorithmic Approach. Production Planning & Control 7, 374–382 (1996)

    CrossRef  Google Scholar 

  10. Cavalieri, S., Gaiardelli, P.: Hybrid Genetic Algorithms for a Multiple-objective Scheduling Problem. Journal of Intelligent Manufacturing 9, 361–367 (1998)

    CrossRef  Google Scholar 

  11. Ishibuchi, H., Murata, H.: A Multi-objective Genetic Local Search Algorithm and Its Application to Flowshop Scheduling. IEEE Transactions on Systems, Man, and Cybernetics – Part C, 392–403 (1998)

    Google Scholar 

  12. Ishibuchi, H., Yoshida, T., Murata, T.: Balance Between Genetic Search and Local Search in Memetic Algorithms for Multiobjective Permutation Flowshop Scheduling. IEEE Transactions on Evolutionary Computation 7, 204–223 (2003)

    CrossRef  Google Scholar 

  13. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6, 182–197 (2002)

    CrossRef  Google Scholar 

  14. Corne, D.W., Jerram, N.R., Knowles, J.D., Oates, M.J.: PESA-II: Region-based Selection in Evolutionary Multiobjective Optimization. In: Spector, et al. (eds.) GECCO 2001, pp. 283–290 (2001)

    Google Scholar 

  15. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. Technical Report 103, Computer Engineering and Network Laboratory (TIK), ETH, Zurich, Switzerland (2001)

    Google Scholar 

  16. Talbi, E.-G., Rahoual, M., Mabed, M.H., Dhaenens, C.: A hybrid evolutionary approach for multicriteria optimization problems: Application to the flow shop. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 416–428. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  17. Chang, P.C., Hsieh, J.C., Lin, S.G.: The Development of Gradual-priority Weighting Approach for the Multi-objective Flowshop Scheduling Problem. International Journal of Production Economics 79, 171–183 (2002)

    CrossRef  Google Scholar 

  18. Chang, P.C., Chen, S.H., Liu, C.H.: Sub-population Genetic Algorithm with Mining Gene Structures for Multiobjective Flowshop Scheduling Problems. Expert Systems with Applications 33, 762–771 (2007)

    CrossRef  Google Scholar 

  19. Arroyo, J.E.C., Armentano, V.A.: Genetic Local Search for Multi-objective Flowshop Scheduling Problems. European Journal of Operational Research 167, 717–738 (2005)

    CrossRef  MATH  MathSciNet  Google Scholar 

  20. Varadharajan, T.K., Rajendran, C.: A Multi-objective Simulated-annealing Algorithm for Scheduling in Flowshops to Minimize the Makespan and Total Flowtime of Jobs. European Journal of Operational Research 167, 772–795 (2005)

    CrossRef  MATH  MathSciNet  Google Scholar 

  21. Pasupathy, T., Rajendran, C., Suresh, R.K.: A Multi-objective Genetic Algorithm for Scheduling in Flow Shops to Minimize the Makespan and Total Flow Time of Jobs. International Journal of Advanced Manufacturing Technology 27, 804–815 (2006)

    CrossRef  Google Scholar 

  22. Geiger, M.J.: On Operators and Search Space Topology in Multi-objective Flow Shop Scheduling. European Journal of Operational Research 181, 195–206 (2007)

    CrossRef  MATH  MathSciNet  Google Scholar 

  23. Cheng, H.C., Chiang, T.C., Fu, L.C.: Multiobjective Permutation Flowshop Scheduling by an Adaptive Genetic Local Search Algorithm. In: IEEE Congress on Evolutionary Computation, pp. 1596–1602 (2008)

    Google Scholar 

  24. Chiang, T.C., Fu, L.C.: A Rule-centric Memetic Algorithm to Minimize the Number of Tardy Jobs in the Job Shop. International Journal of Production Research 46, 6913–6931 (2008)

    CrossRef  Google Scholar 

  25. Nawaz, M., Enscore Jr., E.E., Ham, I.: A Heuristic Algorithm for the m-machine, n-job Flowshop Sequencing Problem. OMEGA 11, 91–95 (1983)

    CrossRef  Google Scholar 

  26. Guo, W., Chen, G., Huang, M., Chen, S.: A Discrete Particle Swarm Optimization Algorithm for the Multiobjective Permutation Flowshop Sequencing Problem. In: Cao (ed.) Fuzzy Information and Engineering, vol. 40, pp. 323–331 (2007)

    Google Scholar 

  27. Taillard, E.: Benchmarks for Basic Scheduling Problems. European Journal of Operational Research 64, 278–285 (1993)

    CrossRef  MATH  Google Scholar 

  28. Bagch, T.P.: Multiobjective Scheduling by Genetic Algorithms. Kluwer, Boston (1999)

    Google Scholar 

  29. Framinan, J.M., Leisten, R., Ruiz-Usano, R.: Efficient Heuristics for Flowshop Sequencing with the Objectives of Makespan and Flowtime Minimization. European Journal of Operational Research 141, 559–569 (2002)

    CrossRef  MATH  Google Scholar 

  30. Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining Convergence and Diversity in Evolutionary Multiobjective Optimization. Evolutionary Computation 10, 263–282 (2002)

    CrossRef  Google Scholar 

  31. Zobolas, G.I., Tarantilis, C.D., Ioannou, G.: Minimizing Makespan in Permutation Flow Shop Scheduling Problems Using a Hybrid Metaheuristic Algorithm. Computers & Operations Research 36, 1249–1267 (2009)

    CrossRef  MATH  MathSciNet  Google Scholar 

  32. Zhang, Y., Li, X., Wang, Q.: Hybrid Genetic Algorithm for Permutation Flowshop Scheduling Problems with Total Flowtime Minimization. European Journal of Operational Research 196, 869–876 (2009)

    CrossRef  MATH  MathSciNet  Google Scholar 

  33. Tseng, L.Y., Lin, Y.-T.: A Hybrid Genetic Local Search Algorithm for the Permutation Flowshop Scheduling Problem. European Journal of Operational Research 198, 84–92 (2009)

    CrossRef  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chiang, TC., Cheng, HC., Fu, LC. (2009). Multiobjective Permutation Flow Shop Scheduling Using a Memetic Algorithm with an NEH-Based Local Search. In: Huang, DS., Jo, KH., Lee, HH., Kang, HJ., Bevilacqua, V. (eds) Emerging Intelligent Computing Technology and Applications. ICIC 2009. Lecture Notes in Computer Science, vol 5754. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04070-2_87

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04070-2_87

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04069-6

  • Online ISBN: 978-3-642-04070-2

  • eBook Packages: Computer ScienceComputer Science (R0)