Skip to main content

An In Vitro Device for Evaluation of Cellular Response to Flows Found at the Apex of Arterial Bifurcations

  • Chapter
  • First Online:
Book cover Advances in Mathematical Fluid Mechanics

Abstract

Intracranial aneurysms (ICA) are abnormal dilations of the cerebral arteries, most commonly located at the apices of bifurcations. The ability of the arterial wall, particularly the endothelial cells forming the inner lining of the wall, to respond appropriately to hemodynamic stresses is critical to arterial health. ICA initiation is believed to be caused by a breakdown in this homeostatic mechanism leading to wall degradation. Due to the complex nature of this process, there is a need for both controlled in vitro and in vivo studies. Chung et al. developed an in vitro chamber for analyzing the response of biological cells to the hemodynamic wall shear stress fields generated by the impinging flows found at arterial bifurcations [7, 6]. Here, we build on this work and design an in vitro flow chamber that can be used to reproduce specific magnitudes of wall shear stress (WSS) and gradients of wall shear stress. Particular attention is given to reproducing spatial distributions of these functions that have been shown to induce pre-aneurysmal changes in vivo [38]. We introduce a measure of the gradient of the wall shear stress vector (WSSVG) which is appropriate for complex 3D flows and reduces to expected measures in simple 2D flows. The WSSVG is a scalar invariant and is therefore appropriate for use in constitutive equations for vessel remodeling in response to hemodynamic loads [34, 35].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, E., Falls, T., Sorkin, A., Tate, M.: The imperative for controlled mechanical stresses in unraveling cellular mechanisms of mechanotransduction. BioMed. Eng. OnLine 5, 27 (2006) doi: 10.1186/1475-925X-5-27

    Google Scholar 

  2. Barbee, K., Davies, P., Lal, R.: Shear stress-induced reorganization of the surface topography of living endothelial cells imaged by atomic force microscopy. Circ. Res. 74(1), 163–171 (1994)

    Google Scholar 

  3. Bathe, K.: Finite Element Procedures. Prentice Hall, Prentice (1996)

    Google Scholar 

  4. Berger, S.A., Lou, L.D.: Flows in stenotic vessels. Annu. Rev. Fluid Mech. 32, 347–382 (2000)

    Article  Google Scholar 

  5. Buchanan, J.R., Kleinstreuer, C., Truskey, G.A., Lei, M.: Relation between non-uniform hemodynamics and sites of altered permeability and lesion growth at the rabbit aorto-celiac junction. Atherosclerosis 143(1), 27–40 (1999)

    Article  Google Scholar 

  6. Chung, B.J.: The study of blood flow in arterial bifurcations: the influence of hemodynamics on endothelial cell response to vessel wall mechanics. Ph.D. thesis, University of Pittsburgh (2004)

    Google Scholar 

  7. Chung, B.J., Robertson, A.M.: A novel flow chamber to evaluate endothelial cell response to flow at arterial bifurcations. In: Annual meeting of the Biomedical Engineering Society (BMES), p. 6P5.113. Nashville, Tennessee (2003)

    Google Scholar 

  8. Chung, B.J., Robertson, A.M., Peters, D.G.: The numerical design of a parallel plate flow chamber for investigation of endothelial cell response to shear stress. Comput. Struct. 81, 535–546 (2003). doi:10.1016/S0045-7949(02)00416-9

    Google Scholar 

  9. Davies, P.F., Shi, C., Depaola, N., Helmke, B.P., Polacek, D.C.: Hemodynamics and the focal origin of atherosclerosis: A spatial approach to endothelial structure, gene expression, and function. Ann. N.Y. Acad. Sci. 947, 7–16; discussion 16–17 (2001)

    Article  Google Scholar 

  10. DePaola, N., Gimbrone, M., Davies, P.F., Dewey, C.: Vascular endothelium responds to fluid shear stress gradients. [erratum appears in Arterioscler Thromb 1993 Mar;13(3):465]. Arterio. Thromb. 12(11), 1254–1257 (1992)

    Google Scholar 

  11. Foutrakis, G.N., Yonas, H., Sclabassi, R.J.: Saccular aneurysm formation in curved and bifurcating arteries. Am. J. Neuroradiol. 20(7), 1309–1317 (1999)

    Google Scholar 

  12. Frangos, J.A., McIntire, L., Eskin, S.G.: Shear stress induced stimulation of mammalian cell metabolism. Biotechnol. Bioeng. 32, 1053–1060 (1988)

    Article  Google Scholar 

  13. Galdi, G.P.: Mathematical problems in classical and non-newtonian fluid mechanics. In: G.P. Galdi, R. Rannacher, A.M. Robertson, S. Turek (eds.) Hemodynamical Flows: Modeling, Analysis and Simulation, Oberwolfach Seminars, vol. 37. Birkhäuser, Cambridge (2008)

    Google Scholar 

  14. Gao, L., Hoi, Y., Swartz, D.D., Kolega, J., Siddiqui, A., Meng, H.: Nascent aneurysm formation at the basilar terminus induced by hemodynamics. Stroke J. Cereb. Circ. 39(7), 2085–2090 (2008)

    Google Scholar 

  15. Glagov, S., Zarins, C., Giddens, D., Ku, D.N.: Hemodynamics and atherosclerosis: insights and perspectives gained from studies of human arteries. Arch. Pathol. Lab. Med. 112, 1018–1031 (1988)

    Google Scholar 

  16. Goode, T., Davies, P., Reidy, M., Bowyer, D.: Aortic endothelial cell morphology observed in situ by scanning electron microscopy during atherogenesis in the rabbit. Atherosclerosis 27(2), 235–51 (1977)

    Article  Google Scholar 

  17. Gresho, P.M.: Some current CFD issues relevant to the incompressible Navier-Stokes equations. Comput. Methods Appl. 87, 201–252 (1991)

    MATH  MathSciNet  Google Scholar 

  18. Haljasmaa, I., Robertson, A.M., Galdi, G.P.: On the effect of apex geomery on wall shear stress and pressure in two-dimensional models of arterial bifurcations. Math. Models Methods Appl. S. 11(3), 499–520 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hashimoto, N., Handa, H., Nagata, I., Hazama, F.: Experimentally induced cerebral aneurysms in rats: Part V. Relation of hemodynamics in the circle of Willis to formation of aneurysms. Surg. Neurol. 13(1), 41–45 (1980)

    Google Scholar 

  20. Hassler, O.: Experimental carotid ligation followed by aneurysmal formation and other morphological changes in the circle of Willis. J. Neurosurg. 20, 1–7 (1963)

    Article  Google Scholar 

  21. Heywood, J.G., Rannacher, R., Turek, S.: Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids 22, 325–352 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  22. Huo, Y., Guo, X., Kassab, G.S.: The flow field along the entire length of mouse aorta and primary branches. Ann. Biomed. Eng. 36(5), 685–699 (2008)

    Article  Google Scholar 

  23. Kamiya, A., Togawa, T.: Adaptive regulation of wall shear stress to flow change in the canine carotid artery. Am. J. Physiol. 239, H14–H21 (1980)

    Google Scholar 

  24. Kayembe, K., Sasahara, M., Hazama, F.: Cerebral aneurysms and variations in the circle of Willis. Stroke 15, 846–850 (1984)

    Google Scholar 

  25. Keynton, R.S., Evancho, M.M., Sims, R.L., Rodway, N.V., Gobin, A., Rittgers, S.E.: Intimal hyperplasia and wall shear in arterial bypass graft distal anastomoses: An in vivo model study. J. Biomech. Eng. 123(5), 464–473 (2001)

    Article  Google Scholar 

  26. Kleinstreuer, C., Hyun, S., Buchanan, J.R., J, Longest, P.W., Archie J.P., J, Truskey, G.A.: Hemodynamic parameters and early intimal thickening in branching blood vessels. Crit. Rev. Biomed. Eng. 29(1), 1–64 (2001)

    Google Scholar 

  27. Ku, D.N.: Blood flow in arteries. Annu. Rev. Fluid Mech. 29(1), 399–434 (1997)

    Article  MathSciNet  Google Scholar 

  28. Kučera, P., Skalák, Z.: Local solutions to the Navier-Stokes equations with mixed boundary conditions. Acta Appl. Math. 54(3), 275–288 (1998) 10.1023/A:1006185601807

    Google Scholar 

  29. LaMack, J.A., Himburg, H.A., Li, X.M., Friedman, M.H.: Interaction of wall shear stress magnitude and gradient in the prediction of arterial macromolecular permeability. Ann. Biomed. Eng. 33(4), 457–464 (2005)

    Article  Google Scholar 

  30. Langille, B.L.: Arterial remodeling: relation to hemodynamics. Can. J. Physiol. Pharmacol. 74(7), 834–841 (1996)

    Article  Google Scholar 

  31. Larkin, J., Barrow, J., Durka, M., Remic, D., Zeng, Z., Robertson, A.M.: Design of a flow chamber to explore the initiation and development of cerebral aneurysms. In: Annual Fall Meeting of the Biomedical Engineering Society (BMES). Los Angeles, CA (2007)

    Google Scholar 

  32. Lei, M., Archie, J.P., Kleinstreuer, C.: Computational design of a bypass graft that minimizes wall shear stress gradients in the region of the distal anastomosis. J. Vasc. Surg. 25(4), 637–646 (1997)

    Article  Google Scholar 

  33. Leone, J.M., Gresho, P.M.: Finite element simulations of steady, two-dimensional, viscous incompressible flow over a step. J. Comput. Phys. 41(1), 167–191 (1981) doi: 10.1016/0021-9991(81)90086-3

    Article  MATH  MathSciNet  Google Scholar 

  34. Li, D., Robertson, A.M.: A structural multi-mechanism damage model for cerebral arterial tissue and its finite element implementation. Proceedings of the ASME 2008 Summer Bioengineering Conference (SBC-2008) (2008)

    Google Scholar 

  35. Li, D., Robertson, A.M.: A structural multi-mechanism damage model for cerebral arterial tissue. J. Biomech. Eng. 131(10), 101013 (2009), doi:10.1115/1-3202559.

    Article  Google Scholar 

  36. Malek, A.M., Izumo, S.: Mechanism of endothelial cell shape change and cytoskeletal remodeling in response to fluid shear stress. J. Cell Sci. 109, 713–726 (1996)

    Google Scholar 

  37. McCann, J., Peterson, S., Plesniak, M., Webster, T., Haberstroh, K.: Non-uniform flow behavior in a parallel plate flow chamber alters endothelial cell responses. Ann. Biomed. Eng. 33(3), 328–336 (2005) 10.1007/s10439-005-1735-9

    Article  Google Scholar 

  38. Meng, H., Swartz, D.D., Wang, Z., Hoi, Y., Kolega, J., Metaxa, E.M., Szymanski, M.P., Yamamoto, J., Sauvageau, E., Levy, E.I.: A model system for mapping vascular responses to complex hemodynamics at arterial bifurcations in vivo. Neurosurgery 59(5), 1094–1100; discussion 1100–1101 (2006)

    Google Scholar 

  39. Meng, H., Wang, Z., Hoi, Y., Gao, L., Metaxa, E., Swartz, D.D., Kolega, J.: Complex hemodynamics at the apex of an arterial bifurcation induces vascular remodeling resembling cerebral aneurysm initiation. Stroke 38(6), 1924–1931 (2007)

    Article  Google Scholar 

  40. Murray, C.D.: The physiological principle of minimum work. Proc. Natl. Acad. Sci. USA 12(3), 207–214 (1926)

    Article  Google Scholar 

  41. Nagel, T., Resnick, N., Dewey, C., Forbes, J., Gimbrone Michael, A., Jr.: Vascular endothelial cells respond to spatial gradients in fluid shear stress by enhanced activation of transcription factors. Arterio. Thromb. Vasc. Biol. 19(8), 1825–1834 (1999)

    Google Scholar 

  42. Robertson, A.M., Sequeira, A., Kameneva, M.: Hemorheology. In: G.P. Galdi, R. Rannacher, A.M. Robertson, S. Turek (eds.) Hemodynamical Flows: Modeling, Analysis and Simulation, Oberwolfach Seminars, vol. 37. Birkhäuser, Cambridge (2008)

    Google Scholar 

  43. Sakamoto, N., Ohashi, T., Sato, M.: High shear stress induces production of matrix metalloproteinase in endothelial cells. In: Proceedings of the ASME 2008 Summer Bioengineering Conference (SBC2008). Marco Island, Florida (2008)

    Google Scholar 

  44. Sasaki, T., Kodama, N., Itokawa, H.: Aneurysm formation and rupture at the site of anastomosis following bypass surgery. J. Neurosurg. 85, 500–502 (1996)

    Article  Google Scholar 

  45. Sekhar, L.N., Heros, R.C.: Origin, growth, and rupture of saccular aneurysms: A review. Neurosurgery 8, 248–260 (1981)

    Article  Google Scholar 

  46. Szymanski, M.: Endothelial cell layer subjected to flow mimickng the apex of an arterial bifurcation. Ph.d., State University of New York at Buffalo (2007)

    Google Scholar 

  47. Szymanski, M., Metaxa, E., Meng, H., Kolega, J.: Endothelial cell layer subjected to impinging flow mimicking the apex of an arterial bifurcation. Ann. Biomed. Eng. 36(10), 1681–1689 (2008)

    Article  Google Scholar 

  48. Truesdell, C., Noll, W.: Non-linear field theories of mechanics. In: S. Flugge (ed.) Handbuch der Physik, vol. III/3. Springer-Verlag, Berlin (1965)

    Google Scholar 

  49. Zakaria, H., Robertson, A.M., Kerber, C.: A parametric model for studies of flow in arterial bifurcations. Ann. Biomed. Eng. 36(9), 1515–1530 (2008)

    Article  Google Scholar 

  50. Zamir, M.: Optimality principles in arterial branching. J. Theor. Biol. 62(1), 227–251 (1976)

    Article  Google Scholar 

  51. Zheng, L., Yang, W.: Biofluid dynamics at arterial bifurcations. Crit. Rev. Biomed. Eng. 19, 455–493 (1992)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Andy Holmes of the Swanson Center for Product Innovation at the University of Pittsburgh for his valuable suggestions on the design and manufacture of the T-chamber. A number of graduates from the Department of Mechanical Engineering and Materials Science at the University of Pittsburgh have worked on an earlier version of the T-chamber as part of their senior design project and as undergraduate researchers. In particular, the authors would like to acknowledge John Barrow, Jason Larkin and David Remic [31]. A.M. Robertson would like to thank the Aachen Institute for Advanced Study in Computational Engineering Science (AICES) of the University of Aachen for a visiting professorship which she held during the period this paper was written.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne M. Robertson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zeng, Z., Chung, B.J., Durka, M., Robertson, A.M. (2010). An In Vitro Device for Evaluation of Cellular Response to Flows Found at the Apex of Arterial Bifurcations. In: Rannacher, R., Sequeira, A. (eds) Advances in Mathematical Fluid Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04068-9_35

Download citation

Publish with us

Policies and ethics