A Study of Shark Skin and Its Drag Reducing Mechanism

  • Elfriede FriedmannEmail author
  • Julia Portl
  • Thomas Richter


In this paper we will give an overview of our studies on turbulent flow over rough surfaces such as shark skin, which have a drag reducing effect known as shark-skin effect. Our mathematical model is restricted to the flow in the viscous sublayer. Here, the turbulences which occur in the flow above this layer enter through a boundary condition. The flow equations are the steady state Navier-Stokes equations with a Couette flow profile given through two boundary conditions: a diagonal flow on the top and the no-slip condition on the rough surface. Direct simulations are performed via stabilized finite elements. For a better approximation of the boundary isoparametric finite elements are used. Our first calculations give a drag reduction of rough surfaces up to 8% whereas 15% is obtained with an improved model. We will discuss this amount of drag reduction and how it can be compared with experimental results. For gaining insight in the details of the flow, how it is influenced by the different shapes of microstructures, and how their drag reducing mechanism can be explained, we used scientific flow visualization. We will present a short overview of the methods employed.


Boundary layers Navier-Stokes equations Direct simulations Drag reduction Flow visualization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.W. Bechert, M. Bruse, and W. Hage, Experiments with three-dimensional riblets as an idealized model of shark skin, Experiments in Fluids 28, 403–412 (2000)CrossRefGoogle Scholar
  2. 2.
    R. Becker, and R. Rannacher, A feed-back approach to error control in finite element methods: Basic analysis and examples, East-West J. Numer. Math 4(4),237–264 (1996)zbMATHMathSciNetGoogle Scholar
  3. 3.
    R. Becker, and M. Braack, A finite element pressure gradient stabilization for the Stokes equation based on Local Projections, Calcolo 38(4), 173–199 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    R. Becker, and R. Rannacher, An optimal control approach to a posteriori error estimation in finite element methods, Acta Numerica 2001 (2001)Google Scholar
  5. 5.
    K.G. Blüchel, and F. Malik, Faszination Bionik. Die Intelligenz der Schöpfung, Mcb Verlag (2006)Google Scholar
  6. 6.
    E. Friedmann, Riblets in the viscous sublayer. Optimal Shape Design of Microstructures, PhD thesis, Ruprecht - Karls - University Heidelberg (2005)Google Scholar
  7. 7.
    E. Friedmann, The optimal shape of riblets in the viscous sublayer, J. Math. Fluid Mech., Birkhäuser Basel, 2008. DOI 10.1007/s00021-008-0284-ZGoogle Scholar
  8. 8.
    E. Friedmann, and Th. Richter, Optimal microstructures. Drag reducing mechanism of riblets, J. Math. Fluid Mech., submitted (2007)Google Scholar
  9. 9.
    E. Friedmann, and Th. Richter, The effect of different in- and outflow conditions modeled on a microscopic flow problem on the macroscopic drag force, Nonlinear Anal.: Real World Applications, Multiscale Problems in Science and Technology: Challenges to Mathematical Analysis and Perspectives, submitted (2008)Google Scholar
  10. 10.
    W. Hage, Zur Widerstandsverminderung von dreidimensionalen Riblet-Strukturen und anderen Oberflächen, Mensch & Buch, Verlag (2005)Google Scholar
  11. 11.
    W. Jäger, and A. Mikelić, Couette flows over a rough boundary and drag reduction, Comm. Math. Phys. 232, 429–455 (2003)zbMATHMathSciNetGoogle Scholar
  12. 12.
    F.H. Post, T. van Walsum, W.C. de Leeuw, A.J.S. Hin, Visualization Techniques for Vector Fields with Applications to Flow Data, CWI Quarterly 7(2), 131–146 (1994)Google Scholar
  13. 13.
    A. Mojetta, Haie - Biografie eines Räubers, Jahr Verlag GmbH & Co (1997)Google Scholar
  14. 14.
    F.H. Post, B. Vrolijk, H. Hauser, R.S. Laramee and H. Doleisch, Feature Extraction and Visualization of Flow Fields, Eurographics 2002 State-of-the-Art Reports (2002)Google Scholar
  15. 15.
    H. Schlichting, and K. Gersten, Boundary-Layer Theory, 8th revised and enlarged edition, Springer-Verlag, Berlin (2000)Google Scholar
  16. 16.
    K. Sch. Steuben and G. Krefft, Die Haie der Sieben Meere, Verlag Paul Parey (1995)Google Scholar
  17. 17.
    P. Thiede, Aerodynamic Drag Reduction Technologies Proceedings of the CEAS/DragNet European Drag Reduction Conference, 19–21 June 2000, Potsdam, GermanyGoogle Scholar
  18. 18.
    M. Van Dyke, An Album of Fluid Motion, Parabolic Pr. (1988)Google Scholar
  19. 19.
    A. Wierse, R. Lang, U. Lang, H. Nebel, D. Rantzau, The Performance of a Distributed Visualization System, Visualization Methods in High Performance Computing and flow Visualization (1996)Google Scholar
  20. 20. Cited 29th April 2008

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Elfriede Friedmann
    • 1
    Email author
  • Julia Portl
    • 2
  • Thomas Richter
    • 3
  1. 1.Department of Applied MathematicsUniversity HeidelbergHeidelbergGermany
  2. 2.Interdisciplinary Center for Scientific Computing (IWR)University HeidelbergHeidelbergGermany
  3. 3.Institute of Applied MathematicsUniversity HeidelbergHeidelbergGermany

Personalised recommendations