Skip to main content

Sanitation by Composting

  • Chapter
  • First Online:
Microbes at Work

Abstract

In composting, there is always a risk of pathogens and unwanted plant seeds being present. The risk of pathogen content varies with substrate and is the highest in sewage and excreta products. There are several functions regulating pathogen inactivation in composting, with the main effect deriving from the heat produced. Most pathogen inactivation starts at temperatures above 50°C, and it increases with increasing temperature. The compost conditions needed for reaching high temperatures are the available energy and oxygen. The temperature distribution within the compost varies depending on factors such as moisture content and external cooling from incoming air. In areas with lower temperatures, inactivation decreases and in some cases where the material is fresh, growth of pathogenic bacteria can occur. In a composting process, it is impossible to monitor all polluting pathogens and plant seeds, and therefore, the most appropriate management option is the validation of the process regarding its efficiency for pathogen inactivation. Thereafter, the sanitisation effect can be monitored via process parameters such as temperature, pH and product stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albihn A, Vinnerås B (2007) Biosecurity and arable use of manure and biowaste. Livest Sci 112:232–239

    Article  Google Scholar 

  • Beck-Friis B, Smårs S, Jönsson H, Eklind Y, Kirchmann H (2003) Composting of source-separated organic household waste at different oxygen levels: gaining an understanding of the emission dynamics. Compost Sci Util 11(1):41–50

    Google Scholar 

  • BioAbfallverordnung (1998) Verordnung über die Verwertung von Bioabfällen auf landwirtschaftlich, forstwirtschaftlich und gärtnerisch genutzten Böden (Bioabfallverordnung – BioAbfV). BGBl. I S. 2955. Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit, Bundesministerium für Ernährung, Landwirtschaft und Forsten und Bundesministerium für Gesundheit. Germany

    Google Scholar 

  • Carslaw HS, Jaeger JC (1958) Conduction of heat in solids. Oxford University Press, London

    Google Scholar 

  • Ceustermans A, De Clercq D, Aertsen A, Michiels C, Coosemans J, Ryckeboer J (2006) Inactivation of Salmonella Senftenberg strain W 775 during composting of biowastes and garden wastes. J Appl Microbiol 103:53–64

    Article  Google Scholar 

  • Choi MH, Park YH (1998) The influence of yeast on thermophilic composting of food waste. Lett Appl Microbiol 26:175–178

    Article  CAS  PubMed  Google Scholar 

  • Datta AK (2007a) Porous media approaches to studying simultaneous heat and mass transfer in food processes. I: problem formulations. J Food Eng 80:80–95

    Article  Google Scholar 

  • Datta AK (2007b) Porous media approaches to studying simultaneous heat and mass transfer in food processes. II: property data and representative results. J Food Eng 80:96–110

    Article  Google Scholar 

  • Eklind Y, Beck-Friis B, Bengtsson S, Ejlertsson J, Kirchmann H, Mathisen B, Nordkvist E, Sonesson U, Svensson BH, Torstensson L (1997) Chemical characterization of source-separated organic household waste. Swed J Agr Res 27:167–178

    CAS  Google Scholar 

  • Eklind Y, Sundberg C, Smårs S, Steger K, Sundh I, Kirchmann H, Jönsson H (2007) Carbon turnover and ammonia emissions during composting of biowaste at different temperatures. J Environ Qual 36(5):1512–1520

    Article  CAS  PubMed  Google Scholar 

  • Elving J, Ottoson J, Vinnerås B, Albihn A (2009) Growth of Salmonella in cold zones in compost material. Journal of Applied Microbiology (in press)

    Google Scholar 

  • Erdogu F (2008) A review on simultaneous determination of thermal diffusivity and heat transfer coefficient. J Food Eng 86:453–459

    Article  Google Scholar 

  • Erdogu F (2005) Mathematical approaches for use of analytical solutions in experimental determination of heat and mass transfer parameters. J Food Eng 68:233–238

    Article  Google Scholar 

  • Feachem RD, Bradley DJ, Garelick H, Mara DD (1983) Sanitation and disease health aspects of excreta and wastewater management. World Bank studies in water supply and sanitation 3. The World Bank, Washington

    Google Scholar 

  • FDA (1992) Bad bug book. U.S. Food and Drug Administration, Centre for Food Safety and Applied Nutrition. Available at: http://www.foodsafety.gov/~mow/intro.html. Accessed November 2008

  • Gibbs RA, Hu HJ, Ho GE, Unkovich I (1997) Regrowth of faecal coliforms and salmonellae in stored biosolids and soil amended with biosolids. Water Sci Technol 35:269–275

    CAS  Google Scholar 

  • Grewal SK, Rajeev S, Sreevatsan S, Michel FC (2006) Persistence of Mycobacterium avium subsp. Paratuberculosis and other zoonotic pathogens during simulated composting, manure packing, and liquid storage of dairy manure. Appl Environ Microbiol 72:565–574

    Article  CAS  PubMed  Google Scholar 

  • Haug RT (1993) The practical handbook of compost engineering. Lewis, New York

    Google Scholar 

  • Hogan JA, Miller FC, Finstein MS (1989) Physical modeling of the composting ecosystem. Appl Environ Microbiol 55:1082–1092

    CAS  PubMed  Google Scholar 

  • Izadpanah MR, Muller-Steinhagen H, Jamialahmadi M (1998) Experimental and theoretical studies of convective heat transfer in a cylindrical porous medium. Int J Heat Fluid Flow 19:629–635

    Article  CAS  Google Scholar 

  • Mason IG, Wilke MW (2005) Physical modelling of the composting environment: a review. Part 1: reactor systems. Waste Manag 25:481–500

    Article  CAS  PubMed  Google Scholar 

  • Nakasaki K, Yaguchi H, Sasaki Y, Kubota H (1993) Effects of pH control on composting of garbage. Waste Manag Res 11(2):117–125

    CAS  Google Scholar 

  • Niwagaba C, Nalubega M, Vinnerås B, Sundberg C, Jönsson H (2009) Substrate composition and moisture in composting source separated human faeces and food waste. Environ Technol 30(5):487–497

    Article  CAS  PubMed  Google Scholar 

  • Nordin A, Nyberg K, Vinnerås B (2009) Inactivation of Ascaris eggs in source-separated urine and faeces by ammonia at ambient temperatures. Appl Environ Microbiol 75(3):662–667

    Article  CAS  PubMed  Google Scholar 

  • Pecson BM, Barrios JA, Jiménez BL, Nelson KL (2007) The effects of temperature, pH, and ammonia concentration on the inactivation of Ascaris eggs in sewage sludge. Water Res 41:2893–2902

    Article  CAS  PubMed  Google Scholar 

  • Richard TL, Hamelers HVM, Veeken A, Silva T (2002) Moisture relationships in composting processes. Compost Sci Util 10(4):286–302

    Google Scholar 

  • Sahlström L, Aspan A, Bagge E, Danielsson-Tham M-L, Albihn A (2004) Bacterial pathogen incidences in sludge from Swedish sewage treatment plants. Water Res 38:1989–1994

    Article  PubMed  Google Scholar 

  • Sahlström L, Bagge E, Emmoth E, Holmqvist A, Danielsson-Tham M-L, Albihn A (2008) A laboratory study of survival of selected microorganisms after heat treatment of biowaste used in biogas plants. Bioresour Technol 99:7859–7865

    Article  PubMed  Google Scholar 

  • Sarwar MK, Majumdar RP (1995) Thermal conductivity of wet composite porous media. Heat Recov Syst ClIP 15(4):369–381

    Article  CAS  Google Scholar 

  • Seki H (2000) A new deterministic model for force-aeration composting processes with batch operation. Trans ASAE 45(4):1239–1250

    Google Scholar 

  • Sidhu J, Gibbs RA, Ho GE, Unkovich I (2001) The role of indigenous microorganisms in suppression of Salmonella regrowth in composted biosolids. Water Res 35:913–920

    Article  CAS  PubMed  Google Scholar 

  • Smårs S, Gustafsson L, Beck-Friis B, Jönsson H (2002) Improvement of the composting time for household waste during an initial low pH phase by mesophilic temperature control. Bioresour Technol 84:237–241

    Article  PubMed  Google Scholar 

  • Sundberg C, Smårs S, Jönsson H (2004) Low pH as an inhibiting factor in the transition from mesophilic to thermophilic phase in composting. Bioresour Technol 95:145–150

    Article  CAS  PubMed  Google Scholar 

  • Sundberg C, Jönsson H (2008) Higher pH and faster decomposition in biowaste composting by increased aeration. Waste Manag 28(3):518–526

    Article  CAS  PubMed  Google Scholar 

  • Sundberg C, Romantschuk M, Jönsson H, Kauppi S, Norgaard E, Smårs S (2008) Reducing odour by process control when composting food waste with low pH. In: ORBIT 2008 Conference Proceedings – Compost Emissions, Paper no 199, Wageningen, Netherlands, Oct 13–15, 12 pp

    Google Scholar 

  • Vinnerås B, Björklund A, Jönsson H (2003) Disinfection of faecal matter by thermal composting – laboratory scale and pilot scale studies. Bioresour Technol 88(1):47–54

    Article  PubMed  Google Scholar 

  • Vinnerås B, Nordin A, Niwagaba C, Nyberg K (2008) Inactivation of bacteria and viruses in human urine depending on temperature and dilution rate. Water Res 42:4067–4074

    Article  PubMed  Google Scholar 

  • Warren KS (1962) Ammonia toxicity and pH. Nature 195:47–49

    Article  CAS  PubMed  Google Scholar 

  • Wichuk KM, McCartney D (2007) A review of the effectiveness of current time-temperature relations on pathogen inactivation during composting. J Environ Eng 6:573–586

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Vinnerås .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vinnerås, B., Agostini, F., Jönsson, H. (2010). Sanitation by Composting. In: Insam, H., Franke-Whittle, I., Goberna, M. (eds) Microbes at Work. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04043-6_9

Download citation

Publish with us

Policies and ethics