Skip to main content

Production and Utilization of Suppressive Compost: Environmental, Food and Health Benefits

  • Chapter
  • First Online:
Microbes at Work

Abstract

Since many centuries, compost has been utilized in agriculture to replace organic matter and nutrients for different crops. Only in recent decades, particular composts, produced with selected starting material and with controlled processes, have been applied to suppress phytopathogenic agents. Such composts can be used to control soil-borne or air-borne pathogens. This has been tested, to control diseases, both in the field and laboratory on many different crops and conditions: greenhouse, horticulture, floriculture, apple, grapes, container systems, pot culture, turf grass, plant nursery, etc. The mechanisms of disease suppression are still not fully understood and include a complex interplay of abiotic (pH, temperature, C/N, organic matter quality, etc.) and biotic (predators, antagonists, competition for nutrients, antibiosis, production of lytic enzymes, microbial metabolites like siderophores, etc.) factors. In this chapter, compost characteristics related to disease suppression, the use of suppressive compost and economical benefits are discussed, in particular the possible reduction of pesticide use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi PA, Miller SA, Meulia T, Hoitink HAJ, Kim JM (1999) Precise detection and tracing of Trichoderma hamatum 382 in compost-amended potting mixes by using molecular markers. Appl Environ Microbiol 65:5421–5426

    CAS  PubMed  Google Scholar 

  • Ames BN, Gold LS (1988) Carcinogenic risk estimation. Science 240:1045–1047

    Article  CAS  PubMed  Google Scholar 

  • Boehm M, Madden LV, Hoitink HAJ (1993) Effect of organic matter decomposition level on bacterial species diversity and composition in relationship to Phythium damping-off. Appl Environ Microbiol 59:4171–4179

    CAS  PubMed  Google Scholar 

  • Boehm MJ, Wu W, Stone A, Kraakman B, Iannotti DA, Wilson GE, Madden LV, Hoitink HAJ (1997) Cross-polarized magic-angle spinning 13C nuclear magnetic resonance spectroscopic characterization of soil organic matter relative to culturable bacterial species composition and sustained biological control of Pythium root rot. Appl Environ Microbiol 63:162–168

    CAS  PubMed  Google Scholar 

  • Boen A, Hammeraas B, Magnusson C, Aasen R (2006) Fate of potato cyst nematode Globodera rostochiensis during composting. Compost Sci Util 14(2):142–146

    Google Scholar 

  • Bollen GJ (1993) Factors involved in inactivation of plant pathogens during composting of crop residues. In: Hoitink HAJ, Keener HM (eds) Science and engineering of composting. Renaissance Publications, Ohio, pp 301–319

    Google Scholar 

  • Bollen GJ, Volker D (1996) Phytohygienic aspects of composting. In: de Bertoldi M, Sequi P, Lemmes B, Papi T (eds) The science of composting. Blackie A&P, Glascow, pp 233–246

    Google Scholar 

  • Boulter JI, Boland GJ, Trevors JT (2000) Compost: a study of the development process and endproduct potential for suppression of turfgrass disease. World J Microbiol Biotechnol 16:115–134

    Article  CAS  Google Scholar 

  • Boulter JI, Trevors JT, Boland GJ (2002) Microbial studies of compost: bacterial identifications and their potential for turfgrass pathogen suppression. World J Microbiol Biotechnol 18:661–671

    Article  CAS  Google Scholar 

  • Bridges BA (1975) The mutagenicity of Captan and related fungicides. Mutat Res 32:3–34

    CAS  PubMed  Google Scholar 

  • Brinton WF, Trankner A, Droffner M (1996) Investigations into liquid compost extracts. Biocycle 37(11):68–70

    Google Scholar 

  • Chanyasak V, Katayama A, Hirai MF, Mori S, Kubota H (1983) Effects on compost maturity on growth of Komatsuna (Brassica rapa var. Pervidis) in Neubauer’s pot. Soil Sci Plant Nutr 29:251–259

    CAS  Google Scholar 

  • Chen Y, Hadar Y (1999) Compost as a substitute of pesticides. In: Proceedings of International Symposium on Modern Agriculture and Environment, Jerusalem

    Google Scholar 

  • Chen Y, Hoitink HAJ, Madden LV (1988a) Microbial activity and biomass in container media predicting supressiveness to damping-off caused by Pythium ultimum. Phytopathology 78:1447–1450

    Article  Google Scholar 

  • Chen W, Hoitink HAJ, Schmitthenner AF, Touvinen OH (1988b) The role of microbial activity in suppression of damping-off caused by Pythium ultimum. Phytopathogy 78:314–322

    Article  Google Scholar 

  • Chung YR, Hoitink HAJ (1990) Interactions between thermophilic fungi and Trichoderma hamatum in suppression of Rhizoctonia damping-off in a bark compost amended container medium. Phytopathology 80:73–77

    Article  Google Scholar 

  • Civilini M, Venuti F, de Bertoldi M, Damante G (2000) Recovery of Salmonella typhimurium from compost with IMS-PCR method. Waste Manag Res 18:1–6

    Google Scholar 

  • Cook RJ, Baker KF (1983) The nature and practice of biological control of plant pathogens. American Phytopatological Society, St. Paul, MN 539pp

    Google Scholar 

  • Dailliez L (1981) Les Templiers et l’Agriculture ou les Composts Templiers. Alpes Méditerranée Edition Impress’Sud, Nice, France

    Google Scholar 

  • Danon M, Franke-Whittle IH, Insam H, Chen Y, Hadar Y (2008) Molecular analysis of bacterial community succession during prolonged compost curing. FEMS Microbiol Ecol 65:133–144

    Article  CAS  PubMed  Google Scholar 

  • de Bertoldi M (1996) Genotoxic effects of pesticides. Eur J Cancer Prev 5:397–399

    PubMed  Google Scholar 

  • de Bertoldi M (1999) The control of the process and compost quality. In: ORBIT99. Rombos, Berlin, pp 47–54

    Google Scholar 

  • de Bertoldi M (2008) The recycling of nutrients by means of organic residues. In: Proceedings of the 6th International Conference ORBIT, Wageningen, pp 1–17

    Google Scholar 

  • de Bertoldi M, Civilini M (2006) High rate composting with innovative process control. Compost Sci Util 14(4):290–295

    Google Scholar 

  • de Bertoldi M, Schnappinger U (2001) Correlation among plant design, process control and quality of compost. In: Proceedings of International Conference ORBIT 2001: biological processing of waste. Spanish Waste Club (ed), Sevilla, Spain, pp 3–13

    Google Scholar 

  • de Bertoldi M, Zucconi F (1986) Composting of organic residues. In: Wise DL (ed) Biotechnology applied to environmental problems. CRC, USA, pp 95–141

    Google Scholar 

  • de Bertoldi M, Vallini G, Pera A (1981) Mutagenicity of pesticides evaluated by means of gene-conversion, crossing-over and non-disjunction in Aspergillus nidulans. In: Proceedings of Third International Conference on Environmental Mutagens, Tokyo

    Google Scholar 

  • de Bertoldi M, Vallini G, Pera A, Zucconi F (1982) Comparison of three windrow compost systems. Biocycle 23:45–50

    Google Scholar 

  • de Bertoldi M, Vallini G, Pera A (1983a) Genotoxic effects of some agricultural pesticides in vitro tested with Aspergillus nidulans. Environ Pollut 30:39–58

    Article  Google Scholar 

  • de Bertoldi M, Pera A, Vallini G (1983b) The biology of composting: a review. Waste Manag Res 1:157–176

    Google Scholar 

  • de Bertoldi M, Vallini G, Pera A (1985) Technological aspects of composting including modelling and microbiology. In: Gasser JKR (ed) Composting of agricultural and other waste. Elsevier, London, pp 27–41

    Google Scholar 

  • de Bertoldi M, Rutili A, Citerio B, Civilin M (1988) Composting management: a new process control through O2 Feedback. Waste Manag Res 6:239–259

    Article  Google Scholar 

  • Diànez F, Santos M, Boix A, de Cara M, Trillas I, Avilès M, Tello JC (2006) Grape mark compost tea suppressiveness to plant pathogernic fungi: role of sideriphores. Compost Sci Util 14(1):48–53

    Google Scholar 

  • Diaz LF, de Bertoldi M, Bidlingmaier W, Stentiford E (2007) Compost science and technology. Elsevier, Amsterdam

    Google Scholar 

  • Diver S (1998) Compost teas for plant disease control. ATTRA, Fayetteville, AR

    Google Scholar 

  • Ekstrom G, Akerblom M (1990) Pesticide management in food and water safety: international contributions and national approaches. Rev Environ Contam Toxicol 114:23–55

    CAS  PubMed  Google Scholar 

  • EPA (1989) Reference dose list. Health Effects Division, Office of Pesticides Programs, U.S. Environmental Protection Agency, Washington, DC, pp 1–62

    Google Scholar 

  • Epstein E, Willson WD, Burge WD, Mullen DC, Enkibi NK (1976) A forced aeration system for composting wastewater sludge. J Water Pollut Control Fed 84(4):687–694

    Google Scholar 

  • Finstein MS, Morris ML (1975) Microbiology of municipal solid waste composting. Adv Appl Microbiol 19:113–151

    Article  CAS  PubMed  Google Scholar 

  • Finstein MS, Miller FC, MacGregor ST, Psarianos KM (1985) The Rutgers strategy for composting: process design and control. EPA Research & Development 600/S2-85/059

    Google Scholar 

  • Finstein MS, Miller FC, Strom PF (1986) Waste treatment composting as a controlled system. In: Schoenborn W (ed) Biotechnology, vol 8. VCH, Weinheim, Germany, pp 363–398

    Google Scholar 

  • Fuchs JG (2002) Practical use of quality compost for plant health and vitality improvement. In: Insam H, Riddech N, Klammer S (eds) Microbiology of composting. Springer, Berlin, pp 435–444

    Google Scholar 

  • Fuchs JG (2010) Interactions between beneficial and harmful microorganisms: from the composting process to compost application. In: Insam H, Franke-Whittle IH, Goberna M (eds) Microbes at work. From wastes to resources. Springer, Heidelberg, pp 213–230

    Google Scholar 

  • Fuchs JG, Baier U, Berner A, Mayer J, Tamm L, Schleiss K (2006) Potential of different composts to improve soil fertility and plant health. In: E Kraft, W Bidlingmaier, M de Bertoldi, LF Diaz, J Barth (eds) Biological Waste Management: from Local to Global. ORBIT 2006, pp 507–518

    Google Scholar 

  • Gibel W (1975) Carcinogenic, hematotoxic and hepatotoxic effects of organic phosphate pesticides. In: Coulston F, Korte F (eds) Environmental quality and safety, pesticides, supplement, vol 4. G. Thieme, Stuttgart, pp 232–234

    Google Scholar 

  • Gilpatrick JD (1969) Role of ammonia in the control of avocado root rot with alfalfa meal soil amendment. Phytopathology 59:973–978

    CAS  Google Scholar 

  • Gold LS, Slone TH, Ames BN, Manley NB (2001) Pesticide residues in food and cancer risk: a critical analysis. In: Krieger R (ed) Handbook of pesticide toxicology, 2nd edn. Academic, San Diego, CA, pp 799–843

    Google Scholar 

  • Hadar Y, Gorodecki B (1991) Suppresion of germination of sclerotia of Sclerotium rolfsii in compost. Soil Biol Biochem 23:303–306

    Article  Google Scholar 

  • Hardy GE, Sivasithamparam K (1991) Antagonism of fungi and actinomycetes isolated from composted eucalyptus bark to Phytophtora drechsleri in a steamed and non-steamed composted eucalyptus bark-amended contained medium. Soil Biol Biochem 27:243–246

    Article  Google Scholar 

  • Hilton MD (1999) Small scale liquid fermentation. In: Demain AL, Davies JE (eds) Manual of industrial microbiology and biotechnology. ASM, Washington, DC, pp 49–60

    Google Scholar 

  • Hoitink HAJ, Boehm MJ (1999) Biocontrol within the context of soil microbial communities: a substrate-dependent phenomenon. Annu Rev Phytopathol 37:427–446

    Article  CAS  PubMed  Google Scholar 

  • Hoitink HAJ, Fahy PC (1986) Basis for the control of soilborn plant pathogens with compost. Annu Rev Phytopathol 24:93–114

    Article  Google Scholar 

  • Hoitink HAJ, Krause MS (2001) Systemic resistence induced in plants against diseases by composts. In: Orbit and Spanish Waste Club (ed) Proceedings of ORBIT 2001, May 9–12, Sevilla, Spain, pp 143–146

    Google Scholar 

  • Hoitink HAJ, Kuter GA (1986) Effects of compost in growth media on soil born plant pathogens. In: Chen Y, Avnimelech Y (eds) The role of organic matter in modern agriculture. Academic, Dordrecht, The Nederland, pp 289–306

    Google Scholar 

  • Hoitink H, van Doren DM, Schmitthenner AF (1977) Suppression of Phytophtora cinnamoni in a composted hardwood bark mixture. Phytopathology 67:561–565

    Article  Google Scholar 

  • Hoitink HAJ, Inbar Y, Boehm MJ (1991) Status of composted-amended potting mixes naturally suppressive to soilborne diseases of floricultural crops. Plant Dis 75:869–873

    Article  Google Scholar 

  • Hoitink HAJ, Boehm MJ, Hadar Y (1993) Mechanisms of suppression of soilborne plant pathogens in compost-amended substrates. In: Hoitink K (ed) Science and engineering of composting. The Ohio State University, Ohio, pp 601–621

    Google Scholar 

  • Hoitink HAJ, Stone AG, Grebus ME (1996) Suppression of plant disease by compost. In: de Bertoldi M, Sequi P, Lemmes B, Papi T (eds) The science of composting. Blackie Academic & Profesional, London, pp 373–381

    Google Scholar 

  • Hoitink HAJ, Stone G, Han DY (1997) Suppression of plant diseases by compost. Hortscience 32:184–187

    Google Scholar 

  • Inbar Y, Boehm MJ, Hoithink HAJ (1991) Hydrolysis of fluoreshin diacetate pear container media for predicting suppressiveness to damping-off caused by Pythium ultimum. Soil Biol Biochem 23:479–483

    Article  CAS  Google Scholar 

  • Ingham ER (2003) The compost tea brewing manual, 4th edn. Soil Foodweb Inc, Corvallis, OR

    Google Scholar 

  • Kai H, Ueda T, Sakaguchi M (1990) Antimicrobial activity of bark-compost extracts. Soil Biol Biochem 22:983–986

    Article  Google Scholar 

  • Klose V, Mohnl M (2010) Microbial antagonists in animal health promotion and plant production. In: Insam H, Franke-Whittle IH, Goberna M (eds) Microbes at work. From wastes to resources. Springer, Heidelberg, pp 193–212

    Google Scholar 

  • Koepf HH (1992) Biodynamic farming: principles and practice. Anthro Press, New York

    Google Scholar 

  • Kuter GA, Nelson EBB, Hoitink HAJ, Madden LV (1983) Fungal population in container media amended with composted hardwood bark suppressive and conductive to Rhizoctonia damping off. Phytopathology 73:1450–1456

    Article  Google Scholar 

  • Kwok OC, Fahy PC, Hoitink HAJ, Kuter GA (1987) Interactions between bacteria and Trichoderma hamatum in suppression of Rhizoctonia damping-off in bark compost media. Phytopathology 77:1206–1212

    Article  Google Scholar 

  • Malek RB, Cartner JB (1975) Hardwood bark as a soil amendment for suppression of plant parasitic nematodes in container grown plants. HortScience 10:33–35

    Google Scholar 

  • Mandelbaum R, Hadar Y (1990) Effect of available carbon source of microbial activity and suppression of Pythium aphanidermatum in compost and peat container media. Phytopathology 80:794–804

    Article  CAS  Google Scholar 

  • Nelson EB, Hoitink HAJ (1983) The role of microorganisms in the suppression of Rhizoctonia solani in container media amended with composted hardwood bark. Phytopathology 73:274–278

    Article  Google Scholar 

  • Nelson EB, Kuter GA, Hoitink HJ (1983) Effect of fungal antagonists and compost age on suppression of Rhizoctonia damping-hoff in container media amended with composted hardwood bark. Phytopathology 73:1457–1462

    Article  Google Scholar 

  • NRC (1987) Regulating Pesticides in Food: the Delaney paradox. National Research Council, National Academy Press, Washington, DC

    Google Scholar 

  • Phae CG, Shoda M, Kubota H (1990) Characteristics of Bacillus subtilis isolated from composts suppressing phytopathogenic microorganisms. Soil Sci Plant Nutr 36:575–586

    Google Scholar 

  • Scheuerell S, Mahaffee W (2002) Compost tea: principles and prospects for plant disease control. Compost Sci Util 10(4):313–338

    Google Scholar 

  • Shirasu Y, Moriya M, Kato K, Furuhashi A, Kada T (1976) Mutagenicity screening of pesticides in the microbial system. Mutat Res 40:19–30

    Article  CAS  PubMed  Google Scholar 

  • Siebert D, Zimmermann FK, Lemperle E (1970) Genetic effects of fungicides. Mutat Res 10:533–543

    CAS  PubMed  Google Scholar 

  • Stanners D, Bourdeau P (1995) Chemicals and genetically modified organisms, In: “Europe’s Environment: the dobris assessment,” European Environment Agency, Copenhagen, pp 375–382

    Google Scholar 

  • Touart AP (2000) Time for compost tea in the Northwest. Biocycle 41(10):74–77

    Google Scholar 

  • van Elsas JD, Postma J (2007) Suppression of soil-born phytopathogens by compost. In: Diaz L, de Bertoldi M, Bidlingmaier W, Stentiford E (eds) Compost science and technology. Elsevier, Amsterdam, pp 210–214

    Google Scholar 

  • Weltzien HC (1990) The use of composted material for leaf disease suppression in field crops. Monograph Br Crop Prot Counc 45:115–120

    Google Scholar 

  • Weltzien HC (1991) Biocontrol of foliar fungal diseases with compost extracts. In: Andrews JH, Hirano SS (eds) Microbial ecology of leaves. Springer-Verlag, New York, pp 430–450

    Google Scholar 

  • WHO (1990) Cancer: causes, occurence and control. In: Tomatis L (ed) IARC Scientific Publication 100. International Agency for Research on Cancer, Lyon

    Google Scholar 

  • Winter CK (1992) Dietary pesticide risk assessment. Rev Environ Contam Toxicol 127:23–67

    CAS  PubMed  Google Scholar 

  • Workneh F, van Bruggen AHC, Drinkwater LE, Sherman C (1993) Variables associated with a reduction in corky root and phytophthora root rot of tomato in organic compared to conventional farms. Phytopathology 83:581–589

    Article  Google Scholar 

  • Zucconi F, Forte M, Monaco A, de Bertoldi M (1981a) Biological evaluation of compost maturity. Biocycle 22:27–30

    CAS  Google Scholar 

  • Zucconi F, Pera A, Forte M, de Bertoldi M (1981b) Evaluating toxicity of immature compost. Biocycle 22:54–57

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco de Bertoldi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Bertoldi, M. (2010). Production and Utilization of Suppressive Compost: Environmental, Food and Health Benefits. In: Insam, H., Franke-Whittle, I., Goberna, M. (eds) Microbes at Work. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04043-6_8

Download citation

Publish with us

Policies and ethics