Vermicomposting: Earthworms Enhance the Work of Microbes

  • Jorge DomínguezEmail author
  • Manuel Aira
  • María Gómez-Brandón


Vermicomposting, a very efficient method of converting solid organic waste into an environmentally-friendly, useful and valuable resource, is an accelerated process that involves bio-oxidation and stabilization of the waste as a result of the interactions between some species of earthworms and microorganisms. Although microorganisms are the main agents for biochemical decomposition of organic matter, earthworms are critical in the process of vermicomposting. Complex interactions among the organic matter, microorganisms, earthworms and other soil invertebrates result in the fragmentation, bio-oxidation and stabilization of the organic matter.


Microbial Community Microbial Biomass Organic Waste Terminal Restriction Fragment Length Polymorphism Total Coliform 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was partially supported by a Xunta de Galicia grant (07MRU023383PR).


  1. Aira M, Domínguez J (2008a) Optimizing vermicomposting of animal wastes: effects of dose of manure application on carbon loss and microbial stabilization. J Environ Manage 88:1525–1529CrossRefPubMedGoogle Scholar
  2. Aira M, Domínguez J (2008b) Microbial and nutrient stabilization of two animal manures after the transit through the gut of the earthworm Eisenia fetida (Savigny, 1826). J Hazard Mater. doi:10.1016/j.jhazmat.2008.04.073 Google Scholar
  3. Aira M, Monroy F, Domínguez J, Mato S (2002) How earthworm density affects microbial biomass and activity in pig manure. Eur J Soil Biol 38:7–10CrossRefGoogle Scholar
  4. Aira M, Monroy F, Domínguez J (2005) Ageing effects on nitrogen dynamics and enzyme activities in casts of Aporrectodea caliginosa (Lumbricidae). Pedobiologia 49:467–473CrossRefGoogle Scholar
  5. Aira M, Monroy F, Domínguez J (2006a) Changes in microbial biomass and microbial activity of pig slurry after the transit through the gut of the earthworm Eudrilus eugeniae (Kinberg, 1867). Biol Fertil Soils 42:371–376CrossRefGoogle Scholar
  6. Aira M, Monroy F, Domínguez J (2006b) Eisenia fetida (Oligochaeta, Lumbricidae) activates fungal growth, triggering cellulose decomposition during vermicomposting. Microb Ecol 52:738–746CrossRefPubMedGoogle Scholar
  7. Aira M, Monroy F, Domínguez J (2007a) Eisenia fetida (Oligochaeta: Lumbricidae) modifies the structure and physiological capabilities of microbial communities improving carbon mineralization during vermicomposting of pig manure. Microb Ecol 54:662–671CrossRefPubMedGoogle Scholar
  8. Aira M, Monroy F, Domínguez J (2007b) Earthworms strongly modify microbial biomass and activity triggering enzymatic activities during vermicomposting independently of the application rates of pig slurry. Sci Total Environ 385:252–261CrossRefPubMedGoogle Scholar
  9. Aira M, Sampedro L, Monroy F, Domínguez J (2008) Detritivorous earthworms directly modify the structure, thus altering the functioning of a microdecomposer food web. Soil Biol Biochem 40:2511–2516CrossRefGoogle Scholar
  10. Anderson JPE, Domsch KH (1993) The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils. Soil Biol Biochem 25:393–395CrossRefGoogle Scholar
  11. Atiyeh R, Dominguez J, Subler S, Edwards CA (2000) Changes in biochemical properties of cow manure during processing by earthworms (Eisenia andrei) and the effects on seedling growth. Pedobiologia 44:709–724CrossRefGoogle Scholar
  12. Bååth E (1994) Measurement of protein synthesis by soil bacterial assemblages with the leucine incorporation technique. Biol Fertil Soils 17:147–153CrossRefGoogle Scholar
  13. Bååth E (2001) Estimation of fungal growth rates in soil using 14C-acetate incorporation into ergosterol. Soil Biol Biochem 33:2011–2018CrossRefGoogle Scholar
  14. Bååth E, Pettersson M, Söderberg KH (2001) Adaptation of a rapid and economical microcentrifugation method to measure thymidine and leucine incorporation by soil bacteria. Soil Biol Biochem 33:1571–1574CrossRefGoogle Scholar
  15. Bardgett RD (2005) The biology of soil: a community and ecosystem approach. Oxford University Press, OxfordGoogle Scholar
  16. Bouché MB (1977) Strategies lombriciennes. In: Lohm U, Persson T (eds) Soil organisms as components of ecosystems, vol 25. Biology Bulletin, Stockholm, pp 122–132Google Scholar
  17. Brown GG (1995) How do earthworms affect microfloral and faunal community diversity? Plant Soil 170:209–231CrossRefGoogle Scholar
  18. Brown GG, Doube BM (2004) Functional interactions between earthworms, microorganisms, organic matter, and plants. In: Edwards CA (ed) Earthworm ecology, 2nd edn. CRC, Boca Raton, pp 213–224Google Scholar
  19. Brown BA, Mitchell MJ (1981) Role of the earthworm, Eisenia foetida, in affecting survival of Salmonella enteriditis ser. typhimurium. Pedobiologia 22:434–438Google Scholar
  20. Brüsewitz G (1959) Untersuchungen über den einfluß des regenwurms auf zahl und leistungen von mikroorganismen im bodem. Arch Microbiol 33:52–82Google Scholar
  21. Clarholm M (1994) The microbial loop. In: Ritz K, Dighton J, Giller KE (eds) Beyond the biomass. Blackwell, Oxford, pp 355–365Google Scholar
  22. Clark WP, Taylor M, Cossins R (2007) Evaluation by respirometry of the loading capacity of a high rate vermicompost bed for treating sewage sludge. Bioresour Technol 98:2611–2618CrossRefGoogle Scholar
  23. Danon M, Franke-Whittle IH, Insam H, Chen Y, Hadar Y (2008) Molecular analysis of bacterial community succession during prolonged compost curing. FEMS Microbiol Ecol 65:133–144CrossRefPubMedGoogle Scholar
  24. Darwin C (1881) The formation of vegetable mould through the action of worms with observations on their habits. Murray, LondonGoogle Scholar
  25. Day GM (1950) Influence of earthworms on soil microorganisms. Soil Sci 69:175–184CrossRefGoogle Scholar
  26. de Bertoldi M (2010) Production and utilization of suppressive compost: environmental, food and health benefits. In: Insam H, Franke-Whittle IH, Goberna M (eds) Microbes at work. From wastes to resources. Springer, Heidelberg, pp 153–170Google Scholar
  27. Deutschbauer AM, Chivian D, Arkin AP (2006) Genomics for environmental microbiology. Curr Opin Biotechnol 17:229–235CrossRefPubMedGoogle Scholar
  28. Domínguez J (2004) State of the art and new perspectives on vermicomposting research. In: Edwards CA (ed) Earthworm ecology, 2nd edn. CRC, Boca Raton, pp 401–424Google Scholar
  29. Domínguez J, Edwards CA (1997) Effects of stocking rate and moisture content on the growth and maturation of Eisenia andrei (Oligochaeta) in pig manure. Soil Biol Biochem 29:743–746CrossRefGoogle Scholar
  30. Domínguez J, Parmelee RW, Edwards CA (2003) Interactions between Eisenia andrei (Oligochaeta) and nematode populations during vermicomposting. Pedobiologia 47:53–60CrossRefGoogle Scholar
  31. Eastman BR, Kane PN, Edwards CA, Trytek L, Gunadi B, Stermer AL, Mobley JR (2001) The effectiveness of vermiculture in human pathogen reduction for USEPA biosolids stabilization. Compost Sci Util 9:38–49Google Scholar
  32. Edwards CA, Bohlen PJ (1996) Biology and ecology of earthworms. Chapman and Hall, LondonGoogle Scholar
  33. Elvira C, Goicoechea M, Sampedro L, Mato S, Nogales R (1996) Bioconversion of solid paper pulp mill sludge by earthworms. Bioresour Technol 57:173–177CrossRefGoogle Scholar
  34. Elvira C, Sampedro L, Benítez E, Nogales R (1998) Vermicomposting of sludges from paper mill and dairy industries with Eisenia andrei: a pilot-scale study. Bioresour Technol 63:205–211CrossRefGoogle Scholar
  35. Fracchia L, Dohrmann AB, Martinotti MG, Tebbe CC (2006) Bacterial diversity in a finished compost and vermicompost: differences revealed by cultivation-independent analyses of PCR-amplified 16S rRNA genes. Appl Microbiol Biotechnol 71:942–952CrossRefPubMedGoogle Scholar
  36. Franke-Whittle IH, Knapp BA, Fuchs J, Kaufmann R, Insam H (2009) Application of COMPOCHIP microarray to investigate the bacterial communities of different composts. Microb Ecol 57:510–521CrossRefPubMedGoogle Scholar
  37. Frostegård Å, Bååth E (1996) The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fertil Soils 22:59–65CrossRefGoogle Scholar
  38. Fuchs JG (2010) Interactions between beneficial and harmful micro-organisms: from the composting process to compost application. In: Insam H, Franke-Whittle IH, Goberna M (eds) Microbes at work. From wastes to resources. Springer, Heidelberg, pp 213–230Google Scholar
  39. Gajalakshmi S, Abbasi SA (2004) Vermiconversion of paper waste by earthworm born and grown in the waste-fed reactors compared to the pioneers raised to adulthood on cow dung feed. Bioresour Technol 94:53–56CrossRefPubMedGoogle Scholar
  40. Gajalakshmi S, Ramasamy EV, Abbasi SA (2005) Composting–vermicomposting of leaf litter ensuing from the trees of mango (Mangifera indica). Bioresour Technol 96:1057–1061CrossRefPubMedGoogle Scholar
  41. Garg P, Gupta A, Satya S (2006) Vermicomposting of different types of waste using Eisenia foetida: a comparative study. Bioresour Technol 97:391–395CrossRefPubMedGoogle Scholar
  42. Garrett SD (1981) Soil fungi and soil fertility. Pergamon, OxfordGoogle Scholar
  43. Gupta R, Mutiyar PK, Rawat NK, Saini MS, Garg VK (2007) Development of a water hyacinth based vermireactor using an epigeic earthworm Eisenia foetida. Bioresour Technol 98:2605–2610CrossRefPubMedGoogle Scholar
  44. Horn MA, Ihssen J, Matthies C, Schramm A, Acker G, Drake HL (2005) Dechloromonas denitrificans sp. nov., Flavobacterium denitrificans sp. nov., Paenibacillus anaericanus sp. nov. and Paenibacillus terrae strain MH72, N2O-producing bacteria isolated from the gut of the earthworm Aporrectodea caliginosa. Int J Syst Evol Microbiol 55:1255–1265CrossRefPubMedGoogle Scholar
  45. Hultman J, Kurola J, Raininsalo A, Kontro M, Romantschuk M (2010) Utility of molecular tools for optimization of large scale composting. In: Insam H, Franke-Whittle IH, Goberna M (eds) Microbes at work. From wastes to resources. Springer, Heidelberg pp 135–152Google Scholar
  46. Insam I, Franke-Whittle IH, Goberna M (2010) Microbes in aerobic and anaerobic waste treatment. In: Insam H, Franke-Whittle IH, Goberna M (eds) Microbes at work. From wastes to resources. Springer, Heidelberg, pp 1–34Google Scholar
  47. Karsten GR, Drake HL (1995) Comparative assessment of the aerobic and anaerobic microflora of earthworm guts and forest soils. Appl Environ Microbiol 61:1039–1044PubMedGoogle Scholar
  48. Kaushik P, Garg VK (2003) Vermicomposting of mixed solid textile mill sludge and cow dung with the epigeic earthworm Eisenia foetida. Bioresour Technol 90:311–316CrossRefPubMedGoogle Scholar
  49. Knapp B, Ros M, Insam H (2010) Do composts affect the soil microbial community? In: Insam H, Franke-Whittle IH, Goberna M (eds) Microbes at work. From wastes to resources. Springer, Heidelberg, pp 271–292Google Scholar
  50. Lavelle P, Spain AV (2001) Soil Ecology. Kluwer, LondonGoogle Scholar
  51. Lavelle P, Bignell D, Lepage M, Wolters V, Roger P, Ineson P, Heal OW, Ghillion S (1997) Soil function in a changing world: the role of invertebrate ecosystem engineers. Eur J Soil Biol 33:159–193Google Scholar
  52. Lazcano C, Gómez-Brandón M, Domínguez J (2008) Comparison of the effectiveness of composting and vermicomposting for the biological stabilization of cattle manure. Chemosphere 72:1013–1019CrossRefPubMedGoogle Scholar
  53. Lores M, Gómez-Brandón M, Pérez-Díaz D, Domínguez J (2006) Using FAME profiles for the characterization of animal wastes and vermicomposts. Soil Biol Biochem 38:2993–2996CrossRefGoogle Scholar
  54. Minz D, Green SJ, Ofek M, Hadar Y (2010) Compost microbial populations and interactions with plants. In: Insam H, Franke-Whittle IH, Goberna M (eds) Microbes at work. From wastes to resources. Springer, Heidelberg, pp 231–230Google Scholar
  55. Monroy F (2006) Efecto das miñocas (clase Oligochaeta) sobre a comunidade descompoñedora durante o proceso de vermicompostaxe. PhD Thesis, Universidade de Vigo, SpainGoogle Scholar
  56. Monroy F, Aira M, Domínguez J (2008) Changes in density of nematodes, protozoa and total coliforms after transit through the gut of four epigeic earthworms (Oligochaeta). Appl Soil Ecol 39:127–132CrossRefGoogle Scholar
  57. Moore JC, Berlow EL, Coleman DC, de Ruiter PC, Dong Q, Johnson NC, McCann KS, Melville K, Morin PJ, Nadelhoffer K, Rosemond AD, Post DM, Sabo JL, Scow KM, Vanni MJ, Wall DH (2004) Detritus, trophic dynamics and biodiversity. Ecol Lett 7:584–600CrossRefGoogle Scholar
  58. Newell SY, Fallon RD (1991) Toward a method for measuring instantaneous fungal growth rates in field samples. Ecology 72:1547–1559CrossRefGoogle Scholar
  59. Nogales R, Elvira C, Benitez E, Thompson R, Gómez M (1999a) Feasibility of vermicomposting dairy biosolids using a modified system to avoid earthworm mortality. J Environ Sci Health B 34:151–169CrossRefPubMedGoogle Scholar
  60. Nogales R, Melgar R, Guerrero A, Lozada G, Benítez E, Thompson R, Gómez M (1999b) Growth and reproduction of Eisenia andrei in dry olive cake mixed with other organic wastes. Pedobiologia 43:744–752Google Scholar
  61. Nogales R, Cifuentes C, Benítez E (2005) Vermicomposting of winery wastes: a laboratory study. J Environ Sci Health B 40:659–673PubMedGoogle Scholar
  62. Parthasarathi K, Ranganathan LS (2000) Ageing effect on enzyme activities in pressmud vermicasts of Lampito mauritii (Kingberg) and Eudrilus eugeniae (Kingberg). Biol Fertil Soils 30:347–350CrossRefGoogle Scholar
  63. Pramanik P, Ghosh GK, Ghosal PK, Banik P (2007) Changes in organic – C, N, P and K and enzyme activities in vermicompost of biodegradable organic wastes under liming and microbial inoculants. Bioresour Technol 98:2485–2494CrossRefPubMedGoogle Scholar
  64. Sampedro L, Domínguez J (2008) Stable isotope natural abundances (δ13C and δ15N) of the earthworm Eisenia fetida and other soil fauna living in two different vermicomposting environments. Appl Soil Ecol 38:91–99CrossRefGoogle Scholar
  65. Sampedro L, Jeannotte R, Whalen JK (2006) Trophic transfer of fatty acids from gut microbiota to the earthworm Lumbricus terrestris L. Soil Biol Biochem 38:2188–2198CrossRefGoogle Scholar
  66. Scheu S (2002) The soil food web: structure and perspectives. Eur J Soil Biol 38:11–20CrossRefGoogle Scholar
  67. Schönholzer F, Dittmar H, Zeyer J (1999) Origins and fate of fungi and bacteria in the gut of Lumbricus terrestris L. studied by image analysis. Fems Microbiol Ecol 28:235–248Google Scholar
  68. Sen B, Chandra TS (2009) Do earthworms affect dynamics of functional response and genetic structure of microbial community in a lab-scale composting system? Bioresour Technol 100:804–811CrossRefPubMedGoogle Scholar
  69. Six J, Frey SD, Thiet RK, Batten KM (2006) Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci Soc Am J 70:555–569CrossRefGoogle Scholar
  70. Suthar S (2007) Vermicomposting potential of Perionyx sansibaricus (Perrier) in different waste material. Bioresour Technol 98:1231–1237CrossRefPubMedGoogle Scholar
  71. Tiunov AV, Scheu S (2004) Carbon availability controls the growth of detritivores (Lumbricidae) and their effect on nitrogen mineralization. Oecologia 138:83–90CrossRefPubMedGoogle Scholar
  72. Triphati G, Bhardwaj P (2004) Decomposition of kitchen waste amended with cow manure using an epigeic species (Eisenia fetida) and an anecic species (Lampito mauritii). Bioresour Technol 92:215–218CrossRefGoogle Scholar
  73. Vetter S, Fox O, Ekschmitt K, Wolters V (2004) Limitations of faunal effects on soil carbon flow: density dependence, biotic regulation and mutual inhibition. Soil Biol Biochem 36:387–397CrossRefGoogle Scholar
  74. Vivas A, Moreno B, García-Rodríguez S, Benítez E (2009) Assessing the impact of composting and vermicomposting on bacterial community size and structure, and microbial functional diversity of an olive-mill waste. Bioresour Technol 100:1319–1326CrossRefPubMedGoogle Scholar
  75. Wardle DA, Ghani A (1995) A critique of the microbial metabolic quotient (qCO2) as a bioindicator of disturbance and ecosystem development. Soil Biol Biochem 12:1601–1610CrossRefGoogle Scholar
  76. Zelles L (1997) Phospholipid fatty acid profiles in selected members for soil microbial communities. Chemosphere 35:275–294CrossRefPubMedGoogle Scholar
  77. Zelles L (1999) Fatty acid patterns of phospholipids and lipopolysaccharides in the characterization of microbial communities in soil: a review. Biol Fertil Soils 29:111–129CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jorge Domínguez
    • 1
    Email author
  • Manuel Aira
    • 1
  • María Gómez-Brandón
    • 1
  1. 1.Departamento de Ecoloxía e Bioloxía AnimalUniversidade de VigoVigoSpain

Personalised recommendations