Skip to main content

Syntrophic Communities in Methane Formation from High Strength Wastewaters

  • Chapter
  • First Online:
Book cover Microbes at Work

Abstract

High-strength wastewaters from agro-industrial processes (sugar refineries, potato-processing factories, distilleries, paper mills, slaughter houses, etc.) are efficiently (pre-)treated using high rate anaerobic wastewater treatment systems. The organic pollution load can be reduced by 80–90% prior to aerobic polishing. The bio-fuel methane thus produced is generally used for the production of electricity and/or steam, thereby lowering the industrial fossil energy demand. Additional advantages of anaerobic (pre-)treatment are a distinct reduction in excess sludge production and space demand, and low operational costs, mainly owing to low sludge handling costs and low chemical costs. Anaerobic treatment in high rate anaerobic bioreactors is accomplished by mixed syntrophic communities of anaerobic bacteria and methanogenic archaea. Balanced and highly structured microbial communities are essential for high rate anaerobic wastewater treatment. This chapter deals with the syntrophic microbial associations in anaerobic sludge and their importance to high rate wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amann R, Ludwig W, Schleifer K (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  PubMed  Google Scholar 

  • Angenent LT, Zheng DD, Sung SH, Raskin L (2002) Microbial community structure and activity in a compartimentalized, anaerobic bioreactor. Water Environ Res 74:450–461

    Article  CAS  PubMed  Google Scholar 

  • Ariesyady HD, Ito T, Okabe S (2007a) Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester. Water Res 41:1554–1568

    Article  CAS  PubMed  Google Scholar 

  • Ariesyady HD, Ito T, Yoshiguchi K, Okabe S (2007b) Phylogenetic and functional diversity of propionate-oxidizing bacteria in an anaerobic digester sludge. Appl Microbiol Biotechnol 75:673–683

    Article  CAS  PubMed  Google Scholar 

  • Balk M, Weijma J, Friedrich MW, Stams AJM (2003) Methanol utilization by a novel thermophilic homoacetogenic bacterium, Moorella mulderi sp. nov., isolated from a bioreactor. Arch Microbiol 179:315–320

    CAS  PubMed  Google Scholar 

  • Balk M, Weijma J, Goorissen HP, Ronteltap M, Hansen TA, Stams AJM (2007) Methanol utilizing Desulfotomaculum species utilizes hydrogen in a methanol-fed sulfate-reducing bioreactor. Appl Microbiol Biotechnol 73:1203–1211

    Article  CAS  PubMed  Google Scholar 

  • Boone DR, Johnson RL, Liu Y (1989) Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and its implications in the measurement of Km for H2 or formate uptake. Appl Environ Microbiol 55:1735–1741

    CAS  PubMed  Google Scholar 

  • Braun R, Drosg B, Bochmann G, Weiß S, Kirchmayr R (2010) Recent developments in bio-energy recovery through fermentation. In: Insam H, Franke-Whittle IH, Goberna M (eds) Microbes at work. From wastes to resources. Springer-Verlag, New York, pp 35–58

    Google Scholar 

  • Carroll EJ, Hungate RE (1955) Formate dissimilation and methane production in bovine rumen contents. Arch Biochem Biophys 56:525–536

    Article  CAS  Google Scholar 

  • Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresource Technol 99:4044–4064

    Article  CAS  PubMed  Google Scholar 

  • Conklin A, Stensel HD, Ferguson J (2006) Growth kinetics and competition between Methanosarcina and Methanosaeta in mesophilic anaerobic digestion. Water Environ Res 78:486–496

    Article  CAS  PubMed  Google Scholar 

  • Cord-Ruwisch R, Ollivier B (1986) Interspecific hydrogen transfer during methanol degradation by Sporomusa acidovorans and hydrogenophilic anaerobes. Arch Microbiol 144:163–165

    Article  CAS  Google Scholar 

  • De Bok FAM, Stams AJM, Dijkema C, Boone DR (2001) Pathway of propionate oxidation by a syntrophic culture of Smithella propionica and Methanospirillum hungatei. Appl Environ Microbiol 67:1800–1804

    Article  PubMed  Google Scholar 

  • De Bok FAM, Luijten MLGC, Stams AJM (2002) Biochemical evidence for formate transfer in syntrophic propionate oxidizing cocultures of Syntrophobacter fumaroxidans and Methanospirillum hungatei. Appl Environ Microbiol 68:4247–4252

    Article  PubMed  Google Scholar 

  • De Bok FAM, Plugge CM, Stams AJM (2004) Interspecies electron transfer in methanogenic propionate degrading consortia. Water Res 38:1368–1375

    Article  PubMed  Google Scholar 

  • De Bok FAM, Harmsen JM, Plugge CM, de Vries MC, Akkermans ADL, deVos WM, Stams AJM (2005) The first true obligately syntrophic propionate-oxidizing bacterium, Pelotomaculum schinkii sp. nov., cocultured with Methanospirillum hungatei, and emended description of the genus Pelotomaculum. Int J Syst Evol Microbiol 55:1697–1703

    Article  PubMed  Google Scholar 

  • Dong X, Plugge CM, Stams AJM (1994) Anaerobic degradation of propionate by a mesophilic acetogenic bacterium in co- and triculture with different methanogens. Appl Environ Microbiol 60:2834–2838

    CAS  PubMed  Google Scholar 

  • Dong X, Stams AJM (1995) Evidence for H2 and formate formation during syntrophic butyrate and propionate degradation. Anaerobe 1:35–39

    Article  CAS  PubMed  Google Scholar 

  • Dolfing J, Jiang B, Henstra AM, Stams AJM, Plugge CM (2008) Syntrophic growth on formate: a new microbial niche in anoxic environments. Appl Environ Microbiol 74:6126–6131

    Article  CAS  PubMed  Google Scholar 

  • Ferry JG (1992) Methanogenesis: ecology, physiology, biochemistry & genetics. Chapman & Hall, New York

    Google Scholar 

  • Griffin ME, McMahon KD, Mackie RI, Raskin L (1998) Methanogenic population dynamics during start-up of anaerobic digesters treating municipal solid waste and biosolids. Biotechnol Bioeng 57:342–355

    Article  CAS  PubMed  Google Scholar 

  • Grotenhuis JTC, Smit M, Plugge CM, Xu YS, Van Lammeren AAM, Stams AJM, Zehnder AJB (1991) Bacteriological composition and structure of granular sludge adapted to different substrates. Appl Environ Microbiol 57:1942–1949

    CAS  PubMed  Google Scholar 

  • Guyot J-P, Brauman A (1986) Methane production from formate by syntrophic association of Methanobacterium bryantii and Desulfovibrio vulgaris JJ. Appl Environ Microbiol 52:1436–1437

    CAS  PubMed  Google Scholar 

  • Harmsen HJM, Akkermans ADL, Stams AJM, De Vos WM (1996) Population dynamics of propionate-oxidizing bacteria under methanogenic and sulfidogenic conditions in anaerobic granular sludge. Appl Environ Microbiol 62:2163–2168

    CAS  PubMed  Google Scholar 

  • Hatamoto M, Imachi H, Yashiro Y, Ohashi A, Harada H (2007) Diversity of anaerobic microorganisms involved in long-chain fatty acid degradation in methanogenic sludges as revealed by RNA-based stable isotope probing. Appl Environ Microbiol 73:4119–4127

    Article  CAS  PubMed  Google Scholar 

  • Hatamoto M, Imachi H, Yashiro Y, Ohashi A, Harada H (2008) Detection of active butyrate-degrading microorganisms in methanogenic sludges by RNA-based stable isotope probing. Appl Environ Microbiol 74:3610–3614

    Article  CAS  PubMed  Google Scholar 

  • Hattori S, Kamagata Y, Hanada S, Shoun H (2000) Thermacetogenium phaeum gen. nov., sp. nov., a strictly anaerobic, thermophilic, syntrophic acetate-oxidizing bacterium. Int J Syst Evol Microbiol 50:1601–1609

    CAS  PubMed  Google Scholar 

  • Heijthuijsen JHFG, Hansen TA (1986) Interspecies hydrogen transfer in co-cultures of methanol-utilizing acidogens and sulfate-reducing or methanogenic bacteria. FEMS Microbiol Lett 144:163–165

    Google Scholar 

  • Hulshoff Pol LW, deCastro Lopes SI, Lettinga G, Lens PNL (2004) Anaerobic sludge granulation. Water Res 38:1376–1389

    Article  CAS  PubMed  Google Scholar 

  • Imachi H, Sekiguchi Y, Kamagata Y, Ohashi A, Harada H (2000) Cultivation and in situ detection of a thermophilic bacterium capable of oxidizing propionate in syntrophic association with hydrogenotrophic methanogens in a thermophilic methanogenic granular sludge. Appl Environ Microbiol 66:3608–3615

    Article  CAS  PubMed  Google Scholar 

  • Imachi H, Sekiguchi Y, Kamagata Y, Hanada S, Ohashi A, Harada H (2002) Pelotomaculum thermopropionicum gen. nov., an anaerobic, thermophilic, syntrophic propionate-oxidizing bacterium. Int J Syst Evol Microbiol 52:1729–1735

    Article  CAS  PubMed  Google Scholar 

  • Insam H, Franke-Whittle IH, Goberna M (2010) Microbes in aerobic and anaerobic waste treatment. In: Insam H, Franke-Whittle IH, Goberna M (eds) Microbes at work. From wastes to resources. Springer, Heidelberg, pp 1–34

    Google Scholar 

  • Ishii S, Kosaka T, Hotta Y, Watanabe K (2005) Simulating the contribution of coaggregation to interspecies hydrogen fluxes in syntrophic methanogenic consortia. Appl Environ Microbiol 72:5093–5096

    Article  Google Scholar 

  • Jetten MSM, Stams AJM, Zehnder AJB (1992) Methanogenesis from acetate: a comparison of the acetate methabolism of Methanothrix soehngenii and Methanosarcina ssp. FEMS Microbiol Rev 88:181–198

    Article  CAS  Google Scholar 

  • Jiang B, Henstra A-M, Paulo PL, Balk M, van Doesburg W, Stams AJM (2009) Atypical one-carbon metabolism of an acetogenic and hydrogenenic Moorella thermoacetica strain. Arch Microbiol 191:123–131

    Article  CAS  PubMed  Google Scholar 

  • Kida K, Morimura S, Sonoda Y (1993) Accumulation of propionic acid during anaerobic treatment of distillery wastewater from barley-shochu making. J Ferment Bioeng 75:213–216

    Article  CAS  Google Scholar 

  • Kleerebezem R, Hulshoff Pol LW, Lettinga G (1999) The role of benzoate in anaerobic degradation of terephthalate. Appl Environ Microbiol 65:1161–1167

    CAS  PubMed  Google Scholar 

  • Lalman JA, Bagley DM (2000) Anaerobic degradation and inhibitory effects of linoleic acid. Water Res 34:4220–4228

    Article  CAS  Google Scholar 

  • Lalman JA, Bagley DM (2001) Anaerobic degradation and methanogenic inhibitory effects of oleic and stearic acids. Water Res 35:2975–2983

    Article  CAS  PubMed  Google Scholar 

  • Leclerc M, Delbes C, Moletta R, Godon JJ (2001) Single strand conformation polymorphism monitoring of 16S rDNA Archaea during start-up of an anaerobic digester. FEMS Microbiol Ecol 34:213–220

    Article  CAS  PubMed  Google Scholar 

  • Leclerc M, Delgènes JP, Godon J-J (2004) Diversity of the Archaeal community in 44 anaerobic digesters as determined by single strand conformation polymorphism analysis and 16S rDNA sequencing. Environ Microbiol 6:809–819

    Article  CAS  PubMed  Google Scholar 

  • Lettinga G, Van Velsen AFM, Hobma SW, DeZeeuw W, Klapwijk A (1980) Use of the upflow sludge blanket reactor concept for biological waste water treatment, especially for anaerobic treatment. Biotechnol Bioeng 22:699–734

    Article  CAS  Google Scholar 

  • Liu Y, Balkwill DL, Aldrich HC, Drake GR, Boone DR (1999) Characterisation of the anaerobic propionate-degrading syntrophs Smithella propionica gen. nov, sp. nov. and Syntrophobacter wolinii. Int J Syst Bacteriol 49:545–556

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Xu HL, Yang SF, Tay JH (2003) Mechanisms and models for anaerobic granulation in upflow anaerobic sludge blanket reactor. Water Res 37:661–673

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Whitman WB (2008) Metabolic, phylogenetic and ecological diversity of methanogenic archaea. In: Wiegel J, Maier MJ, Adams MW (eds) Incredible anaerobe; from physiology to genomics to fuels, vol 1125. New York Academy of Sciences, New York, pp 171–189

    Google Scholar 

  • Lorowitz WH, Zhao HX, Bryant MP (1989) Syntrophomonas wolfei subsp saponavida subsp. nov., a long chain fatty-acid degrading, anaerobic, syntrophic bacterium – Syntrophomonas wolfei subsp wolfei subsp. nov. – and emended descriptions of the genus and species. Int J Syst Bacteriol 39:122–126

    Article  CAS  Google Scholar 

  • Lowe DC (2006) A green source of surprise. Nature 439:148–149

    Article  CAS  PubMed  Google Scholar 

  • McCarty PL (1971) Energetics and kinetics of anaerobic treatment. Adv Chem Ser 105:91–107

    Article  CAS  Google Scholar 

  • McCarty PL (2001) The development of anaerobic treatment and its future. Water Sci Technol 44:149–156

    CAS  PubMed  Google Scholar 

  • McHugh S, Carton M, Mahony T, O'Flaherty V (2003) Methanogenic population structure in a variety of anaerobic bioreactors. FEMS Microbiol Lett 219:297–304

    Article  CAS  PubMed  Google Scholar 

  • McInerney MJ, Bryant MP, Hespell RB, Costerton JW (1981) Syntrophomonas wolfei gen. nov. sp. nov., an anaerobic, syntrophic, fatty-acid oxidizing bacterium. Appl Environ Microbiol 41:1029–1039

    CAS  PubMed  Google Scholar 

  • McInerney MJ, Stams AJM, Boone DR (2005) Genus Syntrophobacter. In: Staley JT, Boone DR, Brenner DJ, de Vos P, Garrity GM, Goodfellow M, Krieg NR, Rainey FA, Schleifer KH (eds) Bergey’s manual of systematic bacteriology, vol 2, 2nd edn. Springer-Verlag, New York, pp 1021–1027

    Google Scholar 

  • McInerney MJ, Struchtemeyer CG, Sieber J, Mouttaki H, Stams AJM, Schink B, Rohlin L, Gunsalus RP (2008) Physiology, ecology, phylogeny and genomics of microorganisms capable of syntrophic metabolism. In: Wiegel J, Maier MJ, Adams MW (eds) Incredible anaerobe; from physiology to genomics to fuels, vol 125. New York Academy of Sciences, New York, pp 58–72

    Google Scholar 

  • Pereira MA, Roest K, Stams AJM, Akkermans ADL, Amaral AL, Pons M-N, Ferreira EC, Mota M, Alves M (2003) Image analysis, methanogenic activity measurements, and molecular biological techniques to monitor granular sludge from EGSB reactors fed with oleic acid. Water Sci Technol 47:181–188

    CAS  PubMed  Google Scholar 

  • Pereira MA, Sousa DZ, Mota M, Alves MM (2004) Mineraliztion of LCFA with anaerobic sludge: Kinetics, enhancement of methanogenic activity and effect of VFA. Biotechnol Bioeng 88:502–511

    Article  CAS  PubMed  Google Scholar 

  • Pereira MA, Pires OC, Mota M, Alves MM (2005) Anaerobic biodegradation of oleic and palmitic acids: evidence of mass transfer limitations caused by long chain fatty acid accumulation onto the anaerobic sludge. Biotechnol Bioeng 92:15–23

    Article  CAS  PubMed  Google Scholar 

  • Plugge CM, Balk M, Stams AJM (2002) Desulfotomaculum thermobenzoicum subsp. thermosyntrophicum subsp. nov., a thermophilic syntrophic propionate-oxidizing spore-forming bacterium. Int J Syst Evol Microbiol 52:391–399

    CAS  PubMed  Google Scholar 

  • Plugge CM, Stams AJM (2005) Syntrophism among Clostridiales. In: Duerre P (ed) Handbook on Clostridia. CRC, Boca Raton, pp 769–784

    Google Scholar 

  • Plugge CM, Jiang B, de Bok FAM, Tsai C, Stams AJM (2009) Effect of tungsten and molybdenum on growth of a syntrophic coculture of Syntrophobacter fumaroxidans and Methanospirillum hungatei. Arch Microbiol 191:55–61

    Article  CAS  PubMed  Google Scholar 

  • Razo-Flores E, Macarie H, Morier F (2006) Application of biological treatment systems for chemical and petrochemical wastewaters. In: Cervantes FJ, Pavlostathis SG, van Haandel AC (eds) Advanced biological treatment processes for industrial wastewaters. IWA, London, pp 267–297

    Google Scholar 

  • Raskin L, Zheng DD, Griffin ME, Stroot PG, Misra P (1995) Characterization of microbial communities in anaerobic bioreactors using molecular probes. Antonie Van Leeuwenhoek 68:297–308

    Article  CAS  PubMed  Google Scholar 

  • Reda T, Plugge CM, Abram NJ, Hirst J (2008) Reversible interconversion of carbon dioxide and formate by an electroactive enzyme. Proc Natl Acad Sci 105:10654–10658

    Article  CAS  PubMed  Google Scholar 

  • Roest K, Heilig GHJ, Smidt H, de Vos WM, Stams AJM, Akkermans ADL (2005) Community analysis of a full-scale anaerobic bioreactor treating paper mill wastewater. Syst Appl Microbiol 28:175–185

    Article  CAS  PubMed  Google Scholar 

  • Schink B (2006) Syntrophic associations in methanogenic degradation. Prog Mol Subcell Biol 41:1–19

    Article  CAS  PubMed  Google Scholar 

  • Schink B, Thauer RK (1988) Energetics of syntrophic methane formation and the influence of aggregation. In: Lettinga G, Zehnder AJB, Grotenhuis JTC, Hulshoff Pol LW (eds) Granular anaerobic sludge; microbiology and technology. Pudoc, Wageningen, pp 5–17

    Google Scholar 

  • Schmidt J, Ahring BK (1993) Effects of hydrogen and formate on the degradation of propionate and butyrate in thermophilic granules from an upflow anaerobic sludge blanket reactor. Appl Environ Microbiol 59:2546–2551

    CAS  PubMed  Google Scholar 

  • Schnürer A, Schink B, Svensson BH (1996) Clostridium ultunense sp. nov., a mesophilic bacterium oxidizing acetate in syntrophic association with a hydrogenotrophic methanogenic bacterium. Int J Syst Bacteriol 46:1145–1152

    Article  PubMed  Google Scholar 

  • Sekiguchi Y, Kamagata Y, Syutsubo K, Ohashi A, Harada H, Nakamura K (1998) Phylogenetic diversity of mesophilic and thermophilic granular sludges determined by 16S rRNA gene analysis. Microbiol 144:2655–2665

    Article  CAS  Google Scholar 

  • Sekiguchi Y, Kamagata Y, Nakamura K, Ohashi A, Harada H (1999) Fluorescence in situ hybridization using 16S rRNA-targeted oligonucleotides reveals localization of methanogens and selected uncultured bacteria in mesophilic and thermophilic sludge granules. Appl Environ Microbiol 65:1280–1288

    CAS  PubMed  Google Scholar 

  • Sekiguchi Y, Kamagata Y, Nakamura K, Ohashi A, Harada H (2000) Syntrophothermus lipocalidus gen. nov., sp. nov., a novel thermophilic, syntrophic, fatty-acid-oxidizing anaerobe which utilizes isobutyrate. Int J Syst Evol Microbiol 50:771–779

    CAS  PubMed  Google Scholar 

  • Shigematsu T, Tang Y, Kobayashi T, Kawaguchi H, Morimura S, Kida K (2004) Effect of dilution rate on metabolic pathway shift between aceticlastic and nonaceticlastic methanogenesis in chemostat cultivation. Appl Environ Microbiol 70:4048–4052

    Article  CAS  PubMed  Google Scholar 

  • Shigematsu T, Era S, Mizuno Y, Ninomiya K, Kamegawa Y, Morimura S, Kida K (2006) Microbial community of a mesophilic propionate-degrading methanogenic consortium in chemostat cultivation analyzed based on 16S rRNA and acetate kinase genes. Appl Microbiol Biotechnol 72:401–415

    Article  CAS  PubMed  Google Scholar 

  • Sobieraj M, Boone DR (2006) Syntrophomonadaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes: an evolving electronic resource for the microbiological community, vol 4. Springer-Verlag, New York, pp 1041–1046

    Google Scholar 

  • Sousa DZ, Smidt H, Alves MM, Stams AJM (2007a) Syntrophomonas zehnderi sp. nov., an anaerobe that degrades long chain fatty acids in co-culture with Methanobacterium formicicum. Int J Syst Evol Microbiol 57:609–615

    Article  CAS  PubMed  Google Scholar 

  • Sousa DZ, Pereira MA, Smidt H, Stams AJM, Alves MM (2007b) Molecular assessment of complex microbial communities degrading long chain fatty acids (LCFA) in methanogenic bioreactors. FEMS Microbiol Ecol 60:252–265

    Article  CAS  PubMed  Google Scholar 

  • Sousa DZ, Pereira MA, Stams AJM, Alves MM, Smidt H (2007c) Microbial communities involved in anaerobic degradation of unsaturated or saturated long chain fatty acids (LCFA). Appl Environ Microbiol 73:1054–1064

    Article  CAS  PubMed  Google Scholar 

  • Svetlitshnyi V, Rainey F, Wiegel J (1996) Thermosyntropha lipolytica gen. nov., sp. nov., a lipolytic, anaerobic, alkalitolerant, thermophilic bacterium utilizing short- and long-chain fatty acids in syntrophic coculture with a methanogenic archaeum. Int J Syst Bacteriol 46:1131–1137

    Article  CAS  PubMed  Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    CAS  PubMed  Google Scholar 

  • Thiele JH, Zeikus JG (1988) Control of interspecies electron flow during anaerobic digestion: significance of formate transfer during syntrophic methanogenesis in flocs. Appl Environ Microbiol 54:20–29

    CAS  PubMed  Google Scholar 

  • UASB (2005) Anaerobic granular sludge bed technology pages. Available at: http://www.uasb.org/. Accessed 25 Sept 2008

  • Unites States Environmental Protection Agency (2008) Climate change home pages. Available at: http://epa.gov/methane/. Accessed 25 Sept 2008

  • Van Lier JB (2008) High-rate anaerobic wastewater treatment: diversifying from end-of the pipe treatment to resource oriented conversion techniques. Water Sci Technol 57:1137–1148

    Article  PubMed  Google Scholar 

  • Van Lier JB, Mahmoud N, Zeeman G (2008) Anaerobic wastewater treatment. In: Henze M, van Loosdrecht MCM, Ekama GA, Brdjanovic D (eds) Biological wastewater treatment: principles, modelling and design. IWA, London, pp 415–456

    Google Scholar 

  • Whitman W, Bowen T, Boone D (2006) The methanogenic bacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, vol 3, 3rd edn. Springer-Verlag, New York, pp 165–207

    Google Scholar 

  • Wofford NQ, Beaty PS, McInerney MJ (1986) Preparation of cell-free extracts and the enzymes involved in fatty acid metabolism in Syntrophomonas wolfei. J Bacteriol 167:179–185

    CAS  PubMed  Google Scholar 

  • Wu C, Liu X, Dong X (2006a) Syntrophomonas cellicola sp. nov., a novel spore-forming syntrophic bacterium isolated from a distilled-spirit-fermenting cellar and assignment of Syntrophospora bryantii to Syntrophomonas bryantii sp. nov., comb. nov. Int J Syst Evol Microbiol 56:2331–2335

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Liu X, Dong X (2006b) Syntrophomonas erecta subsp. sporosyntropha subsp. nov., a spore-forming bacterium that degrades short chain fatty acids in co-culture with methanogens. Syst Appl Microbiol 29:457–462

    Article  CAS  PubMed  Google Scholar 

  • Wu CG, Dong XZ, Liu XL (2007) Syntrophomonas wolfei subsp. methylbutyratica subsp. nov., and assignment of Syntrophomonas wolfei subsp. saponavida to Syntrophomonas saponavida sp. nov comb. nov. Syst Appl Microbiol 30:376–380

    Article  PubMed  Google Scholar 

  • Young JC, McCarty PL (1968) The anaerobic filter for waste treatment. Stanford University Technical Report No. 87

    Google Scholar 

  • Yu Y, Lee C, Hwang S (2004) Analysis of community structures in anaerobic processes using Quantitative Real-Time PCR method. In: Proceedings of the 10th World Congress Anaerobic Digestion Conference, Montréal, Quebec, IWA London, pp 459–465

    Google Scholar 

  • Zhang CY, Liu XL, Dong XZ (2004) Syntrophomonas curvata sp. nov., an anaerobe that degrades fatty acids in co-culture with methanogens. Int J Syst Evol Microbiol 54:969–973

    Article  CAS  PubMed  Google Scholar 

  • Zhang CY, Liu XL, Dong XZ (2005) Syntrophomonas erecta sp. nov., a novel anaerobe that syntrophically degrades short-chain fatty acids. Int J Syst Evol Microbiol 55:799–803

    Article  CAS  PubMed  Google Scholar 

  • Zinder SH, Koch M (1984) Non-aceticlastic methanogenesis from acetate: acetate oxidation by a thermophilic syntrophic coculture. Arch Microbiol 138:263–272

    Article  CAS  Google Scholar 

  • Zumstein E, Moletta R, Godon JJ (2000) Examination of two years of community dynamics in an anaerobic bioreactor using fluorescence polymerase chain reaction (PCR) single-strand conformation polymorphism analysis. Environ Microbiol 2:69–78

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline M. Plugge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Plugge, C.M., van Lier, J.B., Stams, A.J.M. (2010). Syntrophic Communities in Methane Formation from High Strength Wastewaters. In: Insam, H., Franke-Whittle, I., Goberna, M. (eds) Microbes at Work. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04043-6_3

Download citation

Publish with us

Policies and ethics