Skip to main content

Do Composts Affect the Soil Microbial Community?

  • Chapter
  • First Online:
Microbes at Work

Abstract

Compost amendments have been shown to provide manifold benefits, as long as compost of good quality is used and care is taken not to accumulate heavy metals or organic pollutants as a consequence of repeated applications. Among the advantages of compost as soil amendment is its potential to maintain soil organic matter, foster nutrient availability, suppress plant diseases and increase soil microbial abundance and activity, thus enhancing soil quality and fertility. However, only little is known about how compost amendments act as microbial inoculum to the soil and if the compost-borne microflora leaves a long-term imprint on soil microbial communities. In this chapter, it will be analysed if and to what extent soil microbial biomass, activity and community structure are affected by compost amendments. A long-term field study, in which four different composts have been applied annually since 1991, will be presented in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alfreider A, Peters S, Tebbe CC, Rangger A, Insam H (2002) Microbial community dynamics during composting of organic matter as determined by 16S ribosomal DNA analysis. Compost Sci Util 4:303–312

    Google Scholar 

  • Anderson JPE, Domsch KH (1978) Mineralisation of bacteria and fungi in chloroform fumigated soils. Soil Biol Biochem 10:207–213

    Article  CAS  Google Scholar 

  • Bastida F, Kandeler E, Moreno JL, Ros M, Garcia C, Hernandez T (2008) Application of fresh and composted organic wastes modifies structure, size and activity of soil microbial community under semiarid climate. Appl Soil Ecol 40:318–329

    Article  Google Scholar 

  • Bastida F, Hernández T, García C (2010) Soil Degradation and rehabilitation: microorganisms and functionality. In: Insam H, Franke-Whittle IH, Goberna M (eds) Microbes at work. From wastes to resources. Springer, Heidelberg, pp 253–270

    Google Scholar 

  • Beffa T, Blanc M, Lott Fischer J, Lyon PF, Marilley L, Aragno M (1995) Composting: a microbial process. In: Barrage A, Edelman X (eds) Recovery, Recycling and Re-integration. EMPA, Dübendorf, pp 139–144

    Google Scholar 

  • Belete L, Egger W, Neunhäuser C, Caballero B, Insam H (2001) Can community level physiological profiles be used for compost maturity testing? Compost Sci Util 9:6–18

    Google Scholar 

  • Bending GD, Putland C, Rayns F (2000) Changes in microbial community metabolism and labile organic matter fractions as early indicators of the impact of management on soil biological quality. Biol Fertil Soils 31:78–84

    Article  CAS  Google Scholar 

  • Bhattacharyya P, Chakrabarti K, Chakraborty A (2003) Effect of MSW compost on microbiological and biochemical soil quality indicators. Compost Sci Util 11:220–227

    Google Scholar 

  • Calbrix R, Barray S, Chabrerie O, Fourrie L, Laval K (2007) Impact of organic amendments on the dynamics of soil microbial biomass and bacterial communities in cultivated land. Appl Soil Ecol 35:511–522

    Article  Google Scholar 

  • Canali S, Trinchera A, Intrigliolo F, Pompili L, Nisini L, Mocali S, Torrisi B (2004) Effect of long term addition of composts and poultry manure on soil quality of citrus orchards in Southern Italy. Biol Fertil Soils 40:206–210

    Article  Google Scholar 

  • Carrera LM, Buyer JS, Vinyard B, Abdul-Baki AA, Sikora LJ, Teasdale JR (2007) Effects of cover crops, compost, and manure amendments on soil microbial community structure in tomato production systems. Appl Soil Ecol 37:247–255

    Article  Google Scholar 

  • Ceustermans A, Coosemans J, Ryckeboer J (2010) Compost microbial activity related to compost stability. In: Insam H, Franke-Whittle IH, Goberna M (eds) Microbes at work. From wastes to resources. Springer, Heidelberg, pp 115–134

    Google Scholar 

  • Cherif H, Ayari F, Ouzari H, Marzorati M, Brusetti L, Jedidi N, Hassen A, Daffonchio D (2009) Effects of municipal solid waste compost, farmyard manure and chemical fertilizers on wheat growth, soil composition and soil bacterial characteristics under Tunisian arid climate. Eur J Soil Biol 45:138–145

    Article  CAS  Google Scholar 

  • Crecchio C, Curci M, Mininni R, Ricciuti P, Ruggiero P (2001) Short-term effects of municipal solid waste compost amendments on soil carbon and nitrogen content, some enzyme activities and genetic diversity. Biol Fertil Soils 34:311–318

    Article  CAS  Google Scholar 

  • Crecchio C, Curci M, Pizzigallo MDR, Ricciuti P, Ruggiero P (2004) Effects of municipal solid compost amendments on soil enzyme activities and bacterial genetic diversity. Soil Biol Biochem 26:1595–1605

    Google Scholar 

  • de Bertoldi M (2010) Production and utilization of suppressive compost: environmental, food and health benefits. In: Insam H, Franke-Whittle IH, Goberna M (eds) Microbes at work. From wastes to resources. Springer, Heidelberg, pp 153–170

    Google Scholar 

  • Diaz LF, Savage GM (2007) Factors that affect the process. In: Diaz LF, de Bertoldi M, Bidlingmaier W, Stentiford E (eds) Compost science and technology. Elsevier, Oxford, pp 49–65

    Chapter  Google Scholar 

  • Dimambro ME, Lillywhite RD, Rahn CR (2007) The physical, chemical and microbial characteristics of biodegradable municipal waste derived composts. Compost Sci Util 15:243–252

    CAS  Google Scholar 

  • Elfstrand S, BÃ¥th B, MÃ¥rtensson S (2007) Influence of various forms of green manure amendment on soil microbial community composition, enzyme activity and nutrient levels in leek. Appl Soil Ecol 36:70–82

    Article  Google Scholar 

  • European Council (1986) Council Directive 86/278/EEC of 12 June 1986 on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture. Official Journal L 181: 6–12

    Google Scholar 

  • European Union. Landfill directive 1999/31/EC. Official Journal of the European Communities, L182/1, 1999.

    Google Scholar 

  • Felske A, Wolterink A, van Lis R, Akkermans ADL (1998) Phylogeny of the main bacterial 16S rRNA sequences in drentse a grassland soils (The Netherlands). Appl Environ Microbiol 64:871–879

    CAS  PubMed  Google Scholar 

  • Fließbach A, Oberholzer H-R, Gunst L, Mäder P (2006) Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agric Ecosyst Environ 118:273–284

    Article  Google Scholar 

  • Franke-Whittle IH, Klammer SH, Insam H (2005) Design and application of an oligonucleotide microarray for the investigation of compost microbial communities. J Microbiol Methods 62:37–56

    Article  CAS  PubMed  Google Scholar 

  • Franke-Whittle IH, Knapp BA, Fuchs J, Kaufmann R, Insam H (2009) Application of COMPOCHIP microarray to investigate the bacterial communities of different composts. Microb Ecol 57:510–521

    Article  CAS  PubMed  Google Scholar 

  • Fuchs JG (2002) Practical use of quality composts for plant health and vitality improvement. In: Insam H, Riddech N, Klammer S (eds) Microbiology of composting. Springer-Verlag, Berlin, pp 435–444

    Google Scholar 

  • Fuchs JG (2010) Interactions between beneficial and harmful micro-organisms: from the composting process to compost application. In: Insam H, Franke-Whittle IH, Goberna M (eds) Microbes at work. From wastes to resources. Springer, Heidelberg, pp 213–230

    Google Scholar 

  • Fuchs JG, Baier U, Berner A, Mayer J, Tamm L, Schleiss K (2006) Potential of different composts to improve soil fertility and plant health. In: Kraft E, Bidlingmaier W, de Bertoldi M, Diaz LF, Barth J (eds) ORBIT 2006: Biological Waste Management. From Local to Global. In: Proceedings of the International Conference ORBIT 2006. Verlag ORBIT e.V., Weimar, pp 507–517

    Google Scholar 

  • Galli U (2004) Einfluss von Kompost auf die Bodenorganismen. In: Fuchs JG, Bieri M, Chardonnens M (eds) Auswirkungen von Komposten und Gärgut auf die Umwelt, die Bodenfruchtbarkeit sowie die Pflanzengesundheit. Zusammenfassende Ãœbersicht der aktuellen Literatur. Forschungsinstitut für biologischen Landbau (FiBL), Frick, pp 81–105

    Google Scholar 

  • Garcia-Gil JC, Plaza C, Soler-Rovira P, Polo A (2000) Long-term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass. Soil Biol Biochem 32:1907–1913

    Article  CAS  Google Scholar 

  • Garland J, Mills AL (1991) Classification and characterisation of heterotrophic microbial communities on the basis patterns of community level sole carbon source utilization. Appl Environ Microbiol 57:2351–2359

    CAS  PubMed  Google Scholar 

  • Gilani SS, Bahmanyar MA (2008) Impact of organic amendments with and without mineral fertilizers on soil microbial respiration. J Appl Sci 8:642–647

    Article  CAS  Google Scholar 

  • Gomez E, Ferreras L, Toresani S (2006) Soil bacterial functional diversity as influenced by organic amendment application. Bioresour Technol 97:1484–1489

    Article  CAS  PubMed  Google Scholar 

  • Guisquiani PL, Pagliai M, Gigliotti G, Businelli D, Benetti A (1995) Urban waste compost: effects on physical, chemical, and biochemical soil properties. J Environ Qual 24:175–182

    Article  Google Scholar 

  • Hargreaves JC, Adl MS, Warman PR (2008) A review of the use of composted municipal solid waste in agriculture. Agric Ecosyst Environ 123:1–14

    Article  Google Scholar 

  • He ZL, Alva AK, Calvert DV, Li YC, Stoffella PJ, Banks DJ (1995) Nutrient availability and changes in microbial biomass of organic amendments during field incubation. Compost Sci Util 4:293–302

    Google Scholar 

  • He J, Shen J, Zhang L, Zhu Y, Zheng Y, Xu M, Di H (2007) Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environ Microbiol 9:2364–2374

    Article  CAS  PubMed  Google Scholar 

  • Heinemeyer O, Insam H, Kaiser EA, Walenzik G (1989) Soil microbial biomass and respiration measurements: an automated technique based on infra-red gas analysis. Plant Soil 116:191–195

    Article  Google Scholar 

  • Hoitink HAJ, Fahy PC (1986) Basis for the control of soil-borne plant pathogens with composts. Annu Rev Phytopathol 24:93–114

    Article  Google Scholar 

  • http://ec.europa.eu/environment/waste/pdf_comments/040119_proceedings.pdf. Cited 07 Oct 2008

  • http://ec.europa.eu/environment/waste/pdf_comments/040119_proceedings.pdf. Cited 07 Oct 2008

  • http://www.dmu.dk/1_viden/2_Publikationer/3_fagrapporter/rapporter/FR388.pdf. http://www.dmu.dk/1_viden/2_Publikationer/3_fagrapporter/rapporter/FR388.pdf. Cited 13 Oct 2008

  • Hultman J, Kurola J, Raininsalo A, Kontro M, Romantschuk M (2010) Utility of molecular tools for optimization of large scale composting. In: Insam H, Franke-Whittle IH, Goberna M (eds) Microbes at work. From wastes to resources. Springer, Heidelberg, pp 135–152

    Google Scholar 

  • Hüttl RF, Fussy M (2001) Organic matter management – A contribution to sustainability. In: Applying compost – benefits and needs. Seminar Proceedings Brussels, 22–23 November 2001, pp 9–18

    Google Scholar 

  • Innerebner G, Knapp B, Vasara T, Romantschuk M, Insam H (2006) Traceability of ammonia-oxidizing bacteria in compost-treated soils. Soil Biol Biochem 38:1092–1100

    Article  CAS  Google Scholar 

  • Insam H, de Bertoldi M (2007) Microbiology of the composting process. In: Diaz LF, de Bertoldi M, Bidlingmaier W, Stentiford E (eds) Compost science and technology. Elsevier, Oxford, pp 25–48

    Chapter  Google Scholar 

  • Insam H, Goberna M (2004) Use of Biolog® for the community level physiological profiles (CLPP) of environmental samples. In: Kowalchuk GA, de Bruijn FJ, Head IM, Akkermans ADL, van Elsas JD (eds) Molecular microbial ecology manual. Kluwer, Dordrecht, pp 853–860

    Google Scholar 

  • Insam H, Mitchell CC, Dormaar JF (1991) Relationship of soil microbial biomass and activity with fertilisation practice and crop yield of tree ultisols. Soil Biol Biochem 32:1131–1139

    Google Scholar 

  • Insam H, Hutchinson TC, Reber HH (1996) Effects of heavy metal stress on the metabolic quotient of the soil microflora. Soil Biol Biochem 28:691–694

    Article  CAS  Google Scholar 

  • Insam I, Franke-Whittle IH, Goberna M (2010) Microbes in aerobic and anaerobic waste treatment. In: Insam H, Franke-Whittle IH, Goberna M (eds) Microbes at work. From wastes to resources. Springer, Heidelberg, pp 1–34

    Google Scholar 

  • Jenkinson DJ, Brookes PC, Powlson DS (2004) Measuring soil microbial biomass. Soil Biol Biochem 36:5–7

    Article  CAS  Google Scholar 

  • Kowalchuk GA, Naoumenko ZS, Derikx PJL, Felske A, Stephen JR, Arkhipchenko IA (1999) Molecular analysis of ammonia-oxidizing bacteria of the ß subdivision of the class Proteobacteria in compost and composted materials. Appl Environ Microbiol 65:396–403

    CAS  PubMed  Google Scholar 

  • Leff JW, Fierer N (2008) Volatile organic compound (VOC) emissions from soil and litter samples. Soil Biol Biochem 40:1629–1636

    Article  CAS  Google Scholar 

  • Lindinger W, Hansel A, Jordan A (1998) On-line monitoring of volatile organic compounds at pptv levels by means of Proton-Transfer-Reaction Mass Spectrometry (PTR-MS): medical applications, food control and environmental research. Int J Mass Spectrom 173:191–241

    Article  CAS  Google Scholar 

  • Liu WT, Marsh TL, Cheng H, Forney LJ (1997) Characterisation of microbial diversity by determining terminal restriction length polymorphisms of genes encoding 16S rDNA. Appl Environ Microbiol 63:4516–4522

    CAS  PubMed  Google Scholar 

  • Mäder P, Fließbach A, Dubois D, Gunst L, Fried P, Niggli U (2002) Soil fertility and biodiversity in organic farming. Science 296:1694–1697

    Article  PubMed  Google Scholar 

  • Madrid F, Lopez R, Cabrera F (2007) Metal accumulation in soil after application of municipal solid waste compost under intensive farming conditions. Agric Ecosyst Environ 119:249–256

    Article  CAS  Google Scholar 

  • Mantovi P, Baldoni G, Toderi G (2005) Reuse of liquid, dewatered, and composted sewage sludge on agricultural land: effects of long-term application on soil and crop. Water Res 39:289–296

    Article  CAS  PubMed  Google Scholar 

  • Marcote I, Hernández T, Garcia C, Polo A (2001) Influence of one or two successive annual applications of organic fertilisers on the enzyme activity of a soil under barley cultivation. Bioresour Technol 79:147–154

    Article  CAS  PubMed  Google Scholar 

  • Marmo L (2008) EU strategies and policies on soil and waste management to offset greenhouse gas emissions. Waste Manag 28:685–689

    Article  CAS  PubMed  Google Scholar 

  • Mayrhofer S, Mikoviny T, Waldhuber S, Wagner A, Innerebner G, Leuenberger J, Franke-Whittle IH, Märk T, Hansel A, Insam H (2006) Correlation of microbial community and VOC emission in household biowaste. Environ Microbiol 8:1960–1974

    Article  Google Scholar 

  • Minz D, Green SJ, Ofek M, Hadar Y (2010) Compost microbial populations and interactions with plants. In: Insam H, Franke-Whittle IH, Goberna M (eds) Microbes at work. From wastes to resources. Springer, Heidelberg, pp 231–252

    Google Scholar 

  • Monciardini P, Sossio M, Cavaletti L, Chiocchini C, Donadio S (2002) New PCR primers for the selective amplification of 16S rDNA from different groups of actinomycetes. FEMS Microbiol Ecol 42:419–429

    Google Scholar 

  • Moreno JL, Hernández T, Garcia C (1999) Effects of a cadmium-contaminated sewage sludge compost on dynamics of organic matter and microbial activity in an arid soil. Biol Fertil Soils 28:230–237

    Article  CAS  Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analyses of polymerase chain reaction-amplified genes for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  PubMed  Google Scholar 

  • Nendel C, Reuter S (2007) Soil biology and nitrogen dynamics of vineyard soils as affected by a mature biowaste compost application. Compost Sci Util 15:70–77

    CAS  Google Scholar 

  • Nielsen MN, Winding A (2002) Microorganisms as indicators of soil health. Technical report 388. National Environmental Research Institute, Denmark

    Google Scholar 

  • Noble R, Coventry E (2005) Suppression of soil-borne plant diseases with composts: a review. Biocontrol Sci Technol 15:3–20

    Article  Google Scholar 

  • Nocker A, Burr M, Camper AK (2007) Genotypic microbial community profiling: a critical technical review. Microb Ecol 54:276–289

    Article  CAS  PubMed  Google Scholar 

  • Okur N, Kayikcioglu HH, Okur B, Delibacak S (2007) Organic amendment based on tobacco waste compost and farmyard manure: influence on soil biological properties and butter-head lettuce yield. Turk J Agr Forest 32:91–99

    Google Scholar 

  • Pascual JA, Hernandez T, Ayuso M, Garcia C (1997) Changes in the microbial activity of arid soils amended with urban organic wastes. Biol Fertil Soils 24:429–434

    Article  CAS  Google Scholar 

  • Pascual JA, Avilés M, Aguirreolea J, Sánchez-Díaz M (2008) Effect of sanitized and non-sanitized sewage sludge on soil microbial community and the physiology of pepper plants. Plant Soil 310:41–53

    Article  CAS  Google Scholar 

  • Perez-Piqueres A, Edel-Hermann V, Alabouvette C, Steinberg C (2006) Response of soil microbial communities to compost amendments. Soil Biol Biochem 38:460–470

    Article  CAS  Google Scholar 

  • Pinamonti F, Stringari G, Gasperi F, Zorzi G (1997) The use of compost: its effects on heavy metal levels in soil and plants. Resour Conservat Recycl 21:129–143

    Article  Google Scholar 

  • Postma J, Kok H (2001) Effect of compost application on the soil microflora. In: Applying compost – benefits and needs. Seminar Proceedings Brussels, 22–23 November 2001, pp 157–162

    Google Scholar 

  • Ranalli G, Bottura G, Taddei P, Garavani M, Marchetti R, Sorlini C (2001) Composting of solid and sludge residues from agricultural and food industries. Bioindicators of monitoring and compost maturity. J Environ Sci Health A36:415–436

    Article  CAS  Google Scholar 

  • Ranjard L, Poly F, Lata J-C, Mougel C, Thioulouse J, Nazaret S (2001) Characterization of bacterial and fungal soil communities by automated ribosomal intergenic spacer analysis fingerprints: biological and methodological variability. Appl Environ Microbiol 67:4479–4487

    Article  CAS  PubMed  Google Scholar 

  • Ros M, Garcia C, Hernandez T (2003) Soil microbial activity after restoration of a semiarid soil by organic amendments. Soil Biol Biochem 35:463–469

    Article  CAS  Google Scholar 

  • Ros M, Klammer S, Knapp BA, Aichberger K, Insam H (2006a) Long term effects of soil compost amendment on functional and structural diversity and microbial activity. Soil Use Manag 22:209–218

    Article  Google Scholar 

  • Ros M, Pascual JA, Garcia C, Hernandez MT, Insam H (2006b) Hydrolase activities, microbial biomass and bacterial community in a soil after long-term amendment with different composts. Soil Biol Biochem 38:3443–3452

    Article  CAS  Google Scholar 

  • Ros M, Goberna M, Pascual JA J, Klammer S, Insam H (2008) 16S rDNA analysis reveals low microbial diversity in community level physiological profile assays. J Microbiol Methods 72:221–226

    Article  CAS  PubMed  Google Scholar 

  • Ryckeboer J, Mergaert J, Vaes K, Klammer S, De Clercq D, Coosemans J, Insam H, Swings J (2003) A survey of bacteria and fungi occuring during composting and self-heating processes. Ann Microbiol 53:349–410

    Google Scholar 

  • Saison C, Degrange V, Oliver R, Millar P, Commeaux C, Montange D, Le Roux X (2006) Alteration and resilience of the soil microbial community following compost amendment: effects of compost level and compost-borne microbial community. Environ Microbiol 8:247–257

    Article  CAS  PubMed  Google Scholar 

  • Schwieger F, Tebbe CC (1998) A new approach to utilize PCR-single-strand-conformation polymorphism for 16S rRNA gene-based microbial community analysis. Appl Environ Microbiol 64:4870–4876

    CAS  PubMed  Google Scholar 

  • Seewald MSA, Singer W, Hecker-Denschlag N, Knapp BA, Hansel A, Franke-Whittle IH, Insam H. VOC emissions from compost amended soils. Submitted for publication.

    Google Scholar 

  • Shindo H, Hirahara O, Yoshida M, Yamamoto A (2006) Effect of continuous compost application on humus composition and nitrogen fertility of soils in a field subjected to double cropping. Biol Fertil Soils 42:437–442

    Article  Google Scholar 

  • Tejada M, Gonzalez JL, Garcia-Martinez AM, Parrado J (2008) Application of a green manure and green manure composted with beet vinasse on soil restoration: effects on soil properties. Bioresour Technol 99:4949–4957

    Article  CAS  PubMed  Google Scholar 

  • Tejada M, Hernandez MT, Garcia C (2009) Soil restoration using composted plant residues: effects on soil properties. Soil Tillage Res 102:109–117

    Article  Google Scholar 

  • Tiquia SM (2005) Microbiological parameters as indicators of compost maturity. J Appl Microbiol 99:816–828

    Article  CAS  PubMed  Google Scholar 

  • Tittarelli F, Petruzzelli G, Pezzarossa B, Civilini M, Benedetti A, Sequi P (2007) Quality and agronomic use of compost. In: Diaz LF, de Bertoldi M, Bidlingmaier W, Stentiford E (eds) Compost science and technology. Elsevier, Oxford, pp 119–157

    Chapter  Google Scholar 

  • Traulsen BD, Schönhard G, Pestemer W (1997) Risikobewertung der Anwendung von Bioabfallkomposten auf landwirtschaftlichen Nutzflächen. Agribiol Res 50:102–106

    Google Scholar 

  • Vainio EJ, Hantula J (2000) Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Mycol Res 104:927–936

    Article  CAS  Google Scholar 

  • VinnerÃ¥s B, Agostini F, Jönsson H (2010) Sanitisation by composting. In: Insam H, Franke-Whittle IH, Goberna M (eds) Microbes at work. From wastes to resources. Springer, Heidelberg, pp 171–192

    Google Scholar 

  • von Wintzingerode F, Göbel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21:213–229

    Article  Google Scholar 

  • Wei Y, Liu Y (2005) Effects of sewage sludge compost application on crops and cropland in a 3-year field study. Chemosphere 59:1257–1265

    Article  CAS  PubMed  Google Scholar 

  • Williamson N, Brian P, Wellington EMH (2000) Molecular detection of bacterial and streptomycete chitinases in the environment. Antonie Van Leeuwenhoek 78:315–321

    Article  CAS  PubMed  Google Scholar 

  • Yogev A, Raviv M, Hadar Y, Cohen R, Katan J (2006) Plant waste-based composts suppressive to diseases caused by pathogenic Fusarium oxysporum. Eur J Plant Pathol 116:267–278

    Article  Google Scholar 

  • Zaman M, Matsushima M, Chang SX, Inubushi K, Nguyen L, Goto S, Kaneko F, Yoneyama T (2004) Nitrogen mineralization, N2O production and soil microbiological properties as affected by long-term applications of sewage sludge composts. Biol Fertil Soils 40:101–109

    Article  Google Scholar 

  • Zelles L (1999) Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biol Fertil Soils 29:111–129

    Article  CAS  Google Scholar 

  • Zhang M, Heaney D, Solberg E, Heriquez B (2000) The effect of MSW compost on metal uptake and yield of wheat, barley, and canola in less productive framing soils of Alberta. Compost Sci Util 8:224–235

    Google Scholar 

Download references

Acknowledgements

This study was supported by FWF grant P16560. Margarita Ros was supported by a grant from Ministerio de Educacion, Cultura y Deporte, Spain. We also wish to thank the Austrian Agency for Health and Food Safety (AGES) for the permission to sample their site, and in particular K. Aichberger and J. Söllinger for their support with chemical soil analyses and for maintaining the plots. Andrea Rainer is acknowledged for performing soil microbial biomass and respiration measurements as well as assisting in sampling of soils.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brigitte A. Knapp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Knapp, B.A., Ros, M., Insam, H. (2010). Do Composts Affect the Soil Microbial Community?. In: Insam, H., Franke-Whittle, I., Goberna, M. (eds) Microbes at Work. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04043-6_14

Download citation

Publish with us

Policies and ethics