Skip to main content

Advertisement

SpringerLink
  • Log in
Book cover

IAPR International Conference on Pattern Recognition in Bioinformatics

PRIB 2009: Pattern Recognition in Bioinformatics pp 199–210Cite as

  1. Home
  2. Pattern Recognition in Bioinformatics
  3. Conference paper
A Hybrid Metaheuristic for Biclustering Based on Scatter Search and Genetic Algorithms

A Hybrid Metaheuristic for Biclustering Based on Scatter Search and Genetic Algorithms

  • Juan A. Nepomuceno24,
  • Alicia Troncoso25 &
  • Jesús S. Aguilar–Ruiz25 
  • Conference paper
  • 944 Accesses

  • 4 Citations

Part of the Lecture Notes in Computer Science book series (LNBI,volume 5780)

Abstract

In this paper a hybrid metaheuristic for biclustering based on Scatter Search and Genetic Algorithms is presented. A general scheme of Scatter Search has been used to obtain high–quality biclusters, but a way of generating the initial population and a method of combination based on Genetic Algorithms have been chosen. Experimental results from yeast cell cycle and human B-cell lymphoma are reported. Finally, the performance of the proposed hybrid algorithm is compared with a genetic algorithm recently published.

Keywords

  • Biclustering
  • Gene Expression Data
  • Scatter Search
  • Evolutionary Computation

Download conference paper PDF

References

  1. Larranaga, P., et al.: Machine learning in bioinformatics. Briefings in Bioinformatics 7(1), 86–112 (2006)

    CrossRef  CAS  PubMed  Google Scholar 

  2. Busygin, S., Prokopyev, O., Pardalos, P.M.: Biclustering in data mining. Computers and Operations Research 35(9), 2964–2987 (2008)

    CrossRef  Google Scholar 

  3. Levine, E., Getz, G., Domany, E.: Couple two-way clustering analysis of gene microarray data. Proceedings of the National Academy of Sciences (PNAS) of the USA 97(22), 12079–12084 (2000)

    CrossRef  Google Scholar 

  4. Cheng, Y., Church, G.M.: Biclustering of Expression Data. In: 8th International Conference on Intelligent Systems for Molecular Biology, pp. 93–103 (2000)

    Google Scholar 

  5. Tanay, A., Sharan, R., Shamir, R.: Discovering statistically significant biclusters in gene expression data. Bioinformatics 18(1), 136–144 (2002)

    CrossRef  Google Scholar 

  6. Yang, J., Wang, H., Wang, W., Yu, P.: Enhanced biclustering on expression data. In: 3rd IEEE Symposium on Bioinformatics and Bioengineering, pp. 321–327 (2003)

    Google Scholar 

  7. Bergmann, S., Ihmels, J., Barkai, N.: Iterative signature algorithm for the analysis of large-scale gene expression data. Physical Review E 67(3), 31902 (2003)

    CrossRef  Google Scholar 

  8. Harpaz, R., Haralick, R.: Exploiting the geometry of gene expression patterns for unsupervised learning. In: 18th International Conference on Pattern Recognition (ICPR 2006), pp. 670–674 (2006)

    Google Scholar 

  9. Bryan, K., Cunningham, P., Bolshakova, N., Coll, T., Dublin, I.: Biclustering of expression data using simulated annealing. In: 18th IEEE International Symposium on Computer-Based Medical Systems, pp. 383–388 (2005)

    Google Scholar 

  10. Divina, F., Aguilar-Ruiz, J.S.: Biclustering of Expression Data with Evolutionary Computation. IEEE Transactions on Knowledge and Data Engineering 18(5), 590–602 (2006)

    CrossRef  Google Scholar 

  11. Mitra, S., Banka, H.: Multi-objective evolutionary biclustering of gene expression data. Pattern Recognition 39(12), 2464–2477 (2006)

    CrossRef  Google Scholar 

  12. Aguilar-Ruiz, J.S.: Shifting and scaling patterns from gene expression data. Bioinformatics 21(20), 3840–3845 (2005)

    CrossRef  CAS  PubMed  Google Scholar 

  13. Nepomuceno, J.A., Troncoso, A., Aguilar-Ruiz, J.S., Garcıa-Gutierrez, J.: Biclusters Evaluation Based on Shifting and Scaling Patterns. In: Yin, H., Tino, P., Corchado, E., Byrne, W., Yao, X. (eds.) IDEAL 2007. LNCS, vol. 4881, pp. 840–849. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  14. Marti, R., Laguna, M.: Scatter Search. Methodology and Implementation in C. Kluwer Academic Publishers, Boston (2003)

    Google Scholar 

  15. Cho, R.J., et al.: A Genome-Wide Transcriptional Analysis of the Mitotic Cell Cycle. Molecular Cell 2(1), 65–73 (1998)

    CrossRef  CAS  PubMed  Google Scholar 

  16. Alizadeh, A.A., et al.: Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000)

    CrossRef  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Computer Science, University of Sevilla, Spain

    Juan A. Nepomuceno

  2. Area of Computer Science, Pablo de Olavide University of Sevilla, Spain

    Alicia Troncoso & Jesús S. Aguilar–Ruiz

Authors
  1. Juan A. Nepomuceno
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Alicia Troncoso
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Jesús S. Aguilar–Ruiz
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. Department of Automatic Control and Systems Engineering, University of Sheffield, Mappin Street, S1 3JD, Sheffield, UK

    Visakan Kadirkamanathan

  2. Department of Computer Science and Department of Chemical and Process Engineering, University of Sheffield, Mappin Street, S1 3JD, Sheffield, UK

    Guido Sanguinetti

  3. University of Glasgow, Department of Computing Science, Sir Alwyn Williams Building, Lilybank Gardens, Glasgow, G12 8QQ, UK, and, University of Glasgow, Department of Statistics, 14 University Gardens, Glasgow, G12 8QQ, UK

    Mark Girolami

  4. School of Electronics and Computer Science, University of Southampton, SO17 1BJ, Southampton, UK

    Mahesan Niranjan

  5. Department of Chemical and Process Engineering, University of Sheffield, Mappin Street, S1 3JD, Sheffield, UK

    Josselin Noirel

Rights and permissions

Reprints and Permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nepomuceno, J.A., Troncoso, A., Aguilar–Ruiz, J.S. (2009). A Hybrid Metaheuristic for Biclustering Based on Scatter Search and Genetic Algorithms. In: Kadirkamanathan, V., Sanguinetti, G., Girolami, M., Niranjan, M., Noirel, J. (eds) Pattern Recognition in Bioinformatics. PRIB 2009. Lecture Notes in Computer Science(), vol 5780. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04031-3_18

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-642-04031-3_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04030-6

  • Online ISBN: 978-3-642-04031-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • The International Association for Pattern Recognition

    Published in cooperation with

    http://www.iapr.org/

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 34.239.173.144

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.