An Improved Harmony Search Algorithm for the Location of Critical Slip Surfaces in Slope Stability Analysis

  • Liang Li
  • Guang-Ming Yu
  • Shi-Bao Lu
  • Guo-Yan Wang
  • Xue-Song Chu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5755)


The harmony search algorithm was found to be sensitive to the parameters used in the algorithm. Although there is no theoretical method for the determination of values of the used parameters, a dynamic procedure for the values of parameters and a new substituting procedure are proposed in this study which will be demonstrated to be efficient for the location of critical slip surfaces of soil slopes in the slope stability analysis.


Artificial intelligence Engineering optimization Harmony search algorithm Slope stability analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chen, Z., Shao, C.: Evaluation of Minimum factor of safety in Slope Stability Analysis. Canadian Geotechnical Journal 25, 735–748 (1988)CrossRefGoogle Scholar
  2. 2.
    Baker, R., Garber, M.: Theoretical Analysis of the Stability of Slopes. Geotechnique 28, 341–395 (1978)Google Scholar
  3. 3.
    Nguyen, V.U.: Determination of Critical Slope Failure Surfaces. Journal of Geotechnical Engineering, ASCE 111, 238–250 (1985)CrossRefGoogle Scholar
  4. 4.
    Arai, K., Tagyo, K.: Determination of noncircular slip surfaces giving the minimum factor of safety in slope stability analysis 21, 43–51 (1985)Google Scholar
  5. 5.
    Baker, R.: Determination of the critical slip surface in slope stability computations. International Journal of Numerical and Analytical Methods in Geomechanics, 333–359 (1980)Google Scholar
  6. 6.
    Yamagami, T., Jiang, J.C.: A Search for the Critical Slip Surface in Three-Dimensional Slope Stability Analysis. Soils and Foundations 37, 1–6 (1997)Google Scholar
  7. 7.
    Greco, V.R.: Efficient Monte Carlo technique for locating critical slip surface. Journal of Geotechnical Engineering 122, 517–525 (1996)CrossRefGoogle Scholar
  8. 8.
    Malkawi Abdallah, I.H., Hassan, W.F., Sarma, S.K.: Global search method for locating general slip surface using Monte Carlo techniques. Journal of Geotechnical and Geoenvironmental Engineering 127, 688–698 (2001)CrossRefGoogle Scholar
  9. 9.
    Cheng, Y.M.: Location of Critical Failure Surface and some Further Studies on Slope Stability Analysis. Computers and Geotechnics 30, 255–267 (2003)CrossRefGoogle Scholar
  10. 10.
    Bolton Hermanus, P.J., Heymann, G., Groenwold, A.: Global search for critical failure surface in slope stability analysis. Engineering Optimization 35, 51–65 (2003)CrossRefGoogle Scholar
  11. 11.
    Zolfaghari, A.R., Heath, A.C., McCombie, P.F.: Simple genetic algorithm search for critical non-circular failure surface in slope stability analysis. Computers and Geotechnics 32, 139–152 (2005)CrossRefGoogle Scholar
  12. 12.
    Li, L., Chi, S.C., Lin, G.: The complex method based on ant colony algorithm and its application on the slope stability analysis. Chinese Journal of Geotechnical Engineering 26, 691–696 (2004)Google Scholar
  13. 13.
    Cheng, Y.M., Li, L., Chi, S.C.: Determination of the critical slip surface using artificial fish swarms algorithm. Journal of Geotechnical and Geoenvironmental Engineering 134, 244–251 (2008)CrossRefGoogle Scholar
  14. 14.
    Geem, Z.W., Kim, J.H., Loganathan, G.V.: Harmony search. Simulation 76, 60–68 (2001)CrossRefGoogle Scholar
  15. 15.
    Geem, Z.W.: Optimal cost design of water distribution networks using harmony search. Engineeering optimization 38, 259–280 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Liang Li
    • 1
  • Guang-Ming Yu
    • 1
  • Shi-Bao Lu
    • 1
  • Guo-Yan Wang
    • 1
    • 2
  • Xue-Song Chu
    • 1
  1. 1.Qingdao Technological UniversityQingdaoP.R. China
  2. 2.Liao Ning Technical UniversityFuxinP.R. China

Personalised recommendations