Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 247))

  • 779 Accesses

Abstract

In this chapter, one of themost popular and intuitive prototype-based classification algorithms, learning vector quantization (LVQ), is revisited, and recent extensions towards automatic metric adaptation are introduced. Metric adaptation schemes extend LVQ in two aspects: on the one hand a greater flexibility is achieved since the metric which is essential for the classification is adapted according to the given classification task at hand. On the other hand a better interpretability of the results is gained since the metric parameters reveal the relevance of single dimensions as well as correlations which are important for the classification. Thereby, the flexibility of the metric can be scaled from a simple diagonal term to full matrices attached locally to the single prototypes. These choices result in a more complex form of the classification boundaries of the models, whereby the excellent inherent generalization ability of the classifier is maintained, as can be shown by means of statistical learning theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alegre, E., Biehl, M., Petkov, N., Sanchez, L.: Automatic classification of the acrosome status of boar spermatozoa using digital image processing and LVQ. Computers in Biology and Medicine 38, 461–468 (2008)

    Article  Google Scholar 

  2. Bartlett, P.L., Mendelson, S.: Rademacher and Gaussian complexities: risk bounds and structural risks. Journal of Machine Learning Research 3, 463–481 (2002)

    Article  MathSciNet  Google Scholar 

  3. Biehl, M., Breitling, R., Li, Y.: Analysis of Tiling Microarray Data by Learning Vector Quantization and Relevance Learning. In: Yin, H., Tino, P., Corchado, E., Byrne, W., Yao, X. (eds.) IDEAL 2007. LNCS, vol. 4881, pp. 880–889. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Biehl, M., Caticha, N., Riegler, P.: Statistical mechanics of on-line learning. In: Biehl, M., Hammer, B., Verleysen, M., Villmann, T. (eds.) Similarity-based clustering, biomedical applications, and beyond. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Biehl, M., Gosh, A., Hammer, B.: Dynamics and generalization ability of LVQ algorithms. Journal of Machine Learning Research 8, 323–360 (2007)

    Google Scholar 

  6. Biehl, M., Hammer, B., Schneider, P.: Matrix Learning in Learning Vector Quantization, Technical Report Clausthal University of Technology, Department of Computer Science, IfI-06-14 (2006)

    Google Scholar 

  7. Bojer, T., Hammer, B., Koers, C.: Monitoring technical systems with prototype based clustering. In: Verleysen, M. (ed.) European Symposium on Artificial Neural Networks 2003, pp. 433–439. D-side publications (2003)

    Google Scholar 

  8. Bojer, T., Hammer, B., Schunk, D., Tluk von Toschanowitz, K.: Relevance determination in learning vector quantization. In: Proc. of European Symposium on Artificial Neural Networks (ESANN 2001), pp. 271–276. D facto publications (2001)

    Google Scholar 

  9. Bunte, K., Petkov, N., Bosman, H.H.W.J., Biehl, M., Jonkman, M.: Efficient color features for content based image retrieval in dermatolgoy (submitted, 2009)

    Google Scholar 

  10. Bunte, K., Schneider, P., Hammer, B., Schleif, F.-M., Villmann, T., Biehl, M.: Discriminative visualization by limited rank matrix learning. Machine Learning Reports MLR-03-2008 (2008), http://www.uni-leipzig.de/~compint/mlr/mlr_03_2008.pdf , ISSN:1865-3960

  11. Crammer, K., Gilad-Bachrach, R., Navot, A., Tishby, A.: Margin analysis of the LVQ algorithm. In: Advances of Neural Information Processing Systems (2002)

    Google Scholar 

  12. Denecke, A., Wersing, H., Steil, J.J., Körner, E.: Robust object segmentation by adaptive metrics in Generalized LVQ (submitted, 2009)

    Google Scholar 

  13. Duda, R.O., Hart, P.E., Storck, D.G.: Pattern Classification. Wiley, Chichester (2001)

    MATH  Google Scholar 

  14. Grandvalet, Y.: Anisotropic noise injection for input variable relevance determination. IEEE Transactions on Neural Networks 11(6), 1201–1212 (2000)

    Article  Google Scholar 

  15. Guyon, I., Elisseeff, A.: An Introduction to Variable and Feature Selection 3, 1157–1182 (2003)

    Google Scholar 

  16. Hammer, B., Strickert, M., Villmann, T.: On the generalization ability of GRLVQ networks. Neural Processing Letters 21(2), 109–120 (2005)

    Article  Google Scholar 

  17. Hammer, B., Strickert, M., Villmann, T.: Supervised neural gas with general similarity measure. Neural Processing Letters 21(1), 21–44 (2005)

    Article  Google Scholar 

  18. Hammer, B., Villmann, T.: Generalized relevance learning vector quantization. Neural Networks 15, 1059–1068 (2002)

    Article  Google Scholar 

  19. Kohonen, T.: Self-Organizing Maps. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  20. Lee, J.A., Verleysen, M.: Nonlinear dimensionality reduction. Springer, Heidelberg (2007)

    Book  MATH  Google Scholar 

  21. Pregenzer, M., Pfurtscheller, G., Flotzinger, D.: Automated feature selection with distinction sensitive learning vector quantization. Neurocomputing 11, 19–29 (1996)

    Article  Google Scholar 

  22. Sato, A.S., Yamada, K.: An analysis of convergence in generalized LVQ. In: Niklasson, L., Boden, M., Ziemke, T. (eds.) ICANN 1998, pp. 172–176. Springer, Heidelberg (1998)

    Google Scholar 

  23. Sato, A.S., Yamada, K.: Generalized learning vector quantization. In: Tesauro, G., Touretzky, D., Leen, T. (eds.) Advances in Neural Information Processing Systems, vol. 7, pp. 423–429. MIT Press, Cambridge (1995)

    Google Scholar 

  24. Schleif, F.-M., Hammer, B., Kostrzewa, M., Villmann, T.: Exploration of Mass-Spectrometric Data in Clinical Proteomics Using Learning Vector Quantization Methods. Briefings in Bioinformatics 9(2), 129–143 (2007)

    Article  Google Scholar 

  25. Schneider, P., Biehl, M., Hammer, B.: Matrix adaptation in discriminative vector quantization. Technical Report Clausthal University of Technology, Department of Computer Science, IfI-08-08 (2008)

    Google Scholar 

  26. Schneider, P., Biehl, M., Hammer, B.: Adaptive relevance matrices in learning vector quantization (submitted, 2009)

    Google Scholar 

  27. Schneider, P., Bunte, K., Stiekema, H., Hammer, B., Villmann, T., Biehl, M.: Regularization in matrix relevance learning. Machine Learning Reports MLR-02-2008 (2008), http://www.uni-leipzig.de/~compint/mlr/mlr_02_2008.pdf , ISSN:1865-3960

  28. Seo, S., Bode, M., Obermayer, K.: Soft nearest prototype classification. IEEE Transations on Neural Networks 14(2), 390–398 (2003)

    Article  Google Scholar 

  29. Seo, S., Obermayer, K.: Soft learning vector quantization. Neural Computation 15(7), 1589–1604 (2003)

    Article  MATH  Google Scholar 

  30. Sontag, E.D.: Feedforward nets for interpolation and classification. Journal of Computer and System Sciences 45 (1992)

    Google Scholar 

  31. Strickert, M., Seiffert, U., Sreenivasulu, N., Weschke, W., Villmann, T., Hammer, B.: Generalized Relevance LVQ (GRLVQ) with Correlation Measures for Gene Expression Data. Neurocomputing 69, 651–659 (2006)

    Article  Google Scholar 

  32. Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, Series B 58, 267–288 (1996)

    MATH  MathSciNet  Google Scholar 

  33. Valiant, L.: A Theory of the Learnable. Communications of the ACM 27(11), 1134–1142 (1984)

    Article  MATH  Google Scholar 

  34. Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

  35. Villmann, T., Merenyi, E., Hammer, B.: Neural maps in remote sensing image analysis. Neural Networks 16(3-4), 389–403 (2003)

    Article  Google Scholar 

  36. Villmann, T., Schleif, F.-M., Hammer, B.: Comparison of Relevance Learning Vector Quantization with other Metric Adaptive Classification Methods. Neural Networks 19, 610–622 (2006)

    Article  MATH  Google Scholar 

  37. Weinberger, K., Blitzer, J., Saul, L.: Distance metric learning for large margin nearest neighbor classification. In: Weiss, Y., Scholkopf, B., Platt, J. (eds.) Advances in Neural Information Processing Systems 18, pp. 1473–1480. MIT Press, Cambridge (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Biehl, M., Hammer, B., Schneider, P., Villmann, T. (2009). Metric Learning for Prototype-Based Classification. In: Bianchini, M., Maggini, M., Scarselli, F., Jain, L.C. (eds) Innovations in Neural Information Paradigms and Applications. Studies in Computational Intelligence, vol 247. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04003-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04003-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04002-3

  • Online ISBN: 978-3-642-04003-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics